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Chapter 1

Preface

This set of notes has been developed in conjunction with the teaching of Prob-
ability at Pomona College over the course of many semesters. The main goal
of the course has been to introduce the theory and practice of Probability in
the context of problems in statistical inference. Many of the students in the
course will take a statistical inference course in a subsequent semester and will
get to put into practice the theory and techniques developed in the course. For
the rest of the students, the course is a solid introduction to Probability, which
begins with the fundamental definitions of sample spaces, probability, random
variables, distribution functions, and culminates with the celebrated Central
Limit Theorem and its applications. This course also serves as an introduction
to probabilistic modeling and presents good preparation for subsequent courses
in mathematical modeling and stochastic processes.
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Chapter 2

Introduction: An example
from statistical inference

I had two coins: a trick coin and a fair one. The fair coin has an equal chance of
landing heads and tails after being tossed. The trick coin is rigged so that 40%
of the time it comes up head. I lost one of the coins, and I don’t know whether
the coin I have left is the trick coin, or the fair one. How do I determine whether
I have the trick coin or the fair coin?

I believe that I have the trick coin, which has a probability of landing heads
40% of the time, p = 0.40. We can run an experiment to determine whether my
belief is correct. For instance, we can toss the coin many times and determine
the proportion of the tosses that the coin comes up head. If that proportion
is very far off from 0.40, we might be led to believe that the coin is perhaps
the fair one. If the outcome is in a neighborhood of 0.40, we might conclude
that the my belief that I have the trick is correct. However, in the event that
the coin that I have is actually the fair coin, there is the possibility that the
outcome of the experiment might be close to 0.40. Thus, an outcome close to
0.40 should not be enough to give validity to my belief that I have the trick
coin. We therefore need a way to evaluate a given outcome of the experiment
in light of the assumption that the coin that we have is of one of the two types;
that is, under the assumption that the coin is the fair coin or the trick one. We
will next describe how this evaluation procedure can be set up.

- Coin Type Trick fair
Decision
Have Trick Coin (1) (2)
Have Fair Coin (3) (4)

Table 2.1: Which Coin do I have?

First, we set a decision criterion; this can be done before the experiment is
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performed. For instance, suppose the experiment consists of tossing the coin
100 times and determining the number of heads, Ny, in the 100 tosses. If
35 < Ny < 45 then I will conclude that I have the trick coin, otherwise I have
the fair coin.

There are four scenarios that may happen, and these are illustrated in Table
2.1. The first column shows the two possible decisions we can make: either we
have the trick coin, or we have the fair coin. Depending on the actual state of
affairs, illustrated on the first row of the table (we actually have the trick coin or
the fair coin), our decision might be in error. For instance, in scenarios (2) or (3)
our decisions would lead to errors (Why?). What are the chances of that hap-
pening? In this course we’ll learn how to compute a measure of the likelihood
of outcomes (1) through (4) in Table 2.1. This notion of “measure of likelihood”
is what is known as a probability function. It is a function that assigns a number
between 0 and 1 (or 0% to 100%) to sets of outcomes of an experiment.

Once a measure of the likelihood of making an error in a decision is obtained,
the next step is to minimize the probability of making the error. For instance,
suppose that we actually have the fair coin. Based on this assumption, we can
compute the probability that Ny lies between 35 and 45. We will see how to do
this later in the course. This would correspond to computing the probability of
outcome (2) in Table 2.1. We get

Probability of (2) = Prob(35 < Ny < 45, given that p = 0.5) ~ 18.3%.

Thus, if we have the fair coin, and decide, according to our decision criterion,
that we have the trick coin, then there is an 18.3% chance that we make a
mistake.

Alternatively, if we have the trick coin, we could make the wrong decision if
either Ny > 45 or Ny < 35. This corresponds to scenario (3) in Table 2.1. In
this case we obtain

Probability of (3) = Prob(Ng < 35 or Ni > 45, given that p = 0.4) = 26.1%.

Thus, we see that the chances of making the wrong decision are rather high. In
order to bring those numbers down, we can modify the experiment in two ways:

e Increase the number of tosses
e Change the decision criterion

Example 2.0.1 (Increasing the number of tosses). Suppose we toss the coin 500
times. In this case, we will say that we have the trick coin if 175 < Ny < 225
(why?). If we have the fair coin, then the probability of making the wrong
decision is

Probability of (2) = Prob(175 < Ny < 225, given that p = 0.5) = 1.4%.

If we actually have the trick coin, the the probability of making the wrong
decision is scenario (3) in Table 2.1. In this case we obtain

Probability of (3) = Prob(Ng < 175 or Ny > 225, given that p = 0.4) =~ 2.0%.



Note that in this case, the probabilities of making an error are drastically re-
duced from those in the 100 tosses experiment. Thus, we would be more confi-
dent in our conclusions based on our decision criteria. However, it is important
to keep in mind that there is chance, albeit small, of reaching the wrong con-
clusion.

Example 2.0.2 (Change the decision criterion). Toss the coin 100 times and
suppose that we say that we have the trick coin if 37 < Ny < 43; in other
words, we choose a narrower decision criterion.

In this case,

Probability of (2) = Prob(37 < Ny < 43, given that p = 0.5) =~ 9.3%
and
Probability of (3) = Prob(Ngy < 37 or Ny > 43, given that p = 0.4) ~ 47.5%.

Observe that, in this case, the probability of making an error if we actually have
the fair coin is decreased in the case of the 100 tosses experiment; however, if
we do have the trick coin, then the probability of making an error is increased
from that of the original setup.

Our first goal in this course is to define the notion of probability that allowed
us to make the calculations presented in this example. Although we will continue
to use the coin—tossing experiment as an example to illustrate various concepts
and calculations that will be introduced, the notion of probability that we will
develop will extend beyond the coin—tossing example presented in this section.
In order to define a probability function, we will first need to develop the notion
of a Probability Space.
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Chapter 3

Probability Spaces

3.1 Sample Spaces and oc—fields

In this section we discuss a class of objects for which a probability function
can be defined; these are called events. Events are sets of outcomes of random
experiments. We shall then begin with the definition of a random experiment.
The set of all possible outcomes of random experiment is called the sample space
for the experiment; this will be the starting point from which we will build a
theory of probability.

A random experiment is a process or observation that can be repeated indefi-
nitely under the same conditions, and whose outcomes cannot be predicted with
certainty before the experiment is performed. For instance, if a coin is flipped
100 times, the number of heads that come up cannot be determined with cer-
tainty. The set of all possible outcomes of a random experiment is called the
sample space of the experiment. In the case of 100 tosses of a coin, the sample
spaces is the set of all possible sequences of Heads (H) and Tails (T) of length
100:

H H H H ... H
T H H H ... H
H T H H ... H

Events are subsets of the sample space for which we can compute probabilities.
If we denote the sample space for an experiment by C, a subset, E, of C, denoted

ECC,

is a collection of outcomes in C. For example, in the 100—coin—toss experiment,
if we denote the number of heads in an outcome by Ny ; then the set of outcomes
for which 35 < Ny < 45 is a subset of C. We will denote this set by (35 <
Ny < 45), so that

(35 < Ny <45) CC,

11



12 CHAPTER 3. PROBABILITY SPACES

the set of sequences of H and T that have between 35 and 45 heads.
Events are a special class of subsets of a sample space C. These subsets satisfy
a set of axioms known as the axioms of a o—algebra, or the o—field axioms.

Definition 3.1.1 (o-field). A collection of subsets, B, of a sample space C,
referred to as events, is called a o—field if it satisfies the following properties:

1. § € B (0 denotes the empty set, or the set with no elements).

2. If E € B, then its complement, E¢ (the set of outcomes in the sample
space that are not in E) is also an element of B; in symbols, we write

FEeB= E°ecB.

3. If (B4, Eq, E3...) is a sequence of events, then the union of the events is
also in B; in symbols,

EkeBhrk:Lz&nw:JﬁuEyy&LL“:LJEkE&
k=1

oo

where U E} denotes the collection of outcomes in the sample space that
k=1
belong to at least one of the events Ey, for k =1,2,3,...

Example 3.1.2. Toss a coin three times in a row. The sample space, C, for
this experiment consists of all triples of heads (H) and tails (7'):

HHH
HHT
HTH
HTT
THH
THT
TTH
TTT

Sample Space

An example of a o-field for this sample space consists of all possible subsets
of the sample space. There are 28 = 256 possible subsets of this sample space;
these include the empty set () and the entire sample space C.
An example of an event, F, is the the set of outcomes that yield at least one
head:
E={HHH, HHT, HTH, HTT, THH, THT, TTH}.

Its complement, E°, is also an event:

E° = {TTT}.
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3.2 Some Set Algebra

Since a o—field consists of a collection of sets satisfying certain properties, before
we proceed with our study of o—fields, we need to understand some notions from
set theory.

Sets are collections of objects called elements. If A denotes a set, and a is
an element of that set, we write a € A.

Example 3.2.1. The sample space, C, of all outcomes of tossing a coin three
times in a row is a set. The outcome HT H is an element of C; that is, HI'H € C.

If A and B are sets, and all elements in A are also elements of B, we say
that A is a subset of B and we write A C B. In symbols,

ACBifandonlyifz € A= x € B.

Example 3.2.2. Let C denote the set of all possible outcomes of three consec-
utive tosses of a coin. Let E denote the the event that exactly one of the tosses
yields a head; that is,

E={HTT, THT, TTH};
then, £ C C.

Two sets A and B are said to be equal if and only if all elements in A are
also elements of B, and vice versa; i.e., A C B and B C A. In symbols,

A=Bifand only if A C B and B C A.

Let E be a subset of a sample space C. The complement of F, denoted E°,
is the set of elements of C which are not elements of E. We write,

E¢={zeC|z¢FE}

Example 3.2.3. If E is the set of sequences of three tosses of a coin that yield
exactly one head, then

E°={HHH, HHT, HTH, THH, TTT};

that is, E° is the event of seeing two or more heads, or no heads in three
consecutive tosses of a coin.

If A and B are sets, then the set which contains all elements that are con-
tained in either A or in B is called the union of A and B. This union is denoted
by AU B. In symbols,

AUB={x|ze€ Aor z € B}
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Example 3.2.4. Let A denote the event of seeing exactly one head in three
consecutive tosses of a coin, and let B be the event of seeing exactly one tail in
three consecutive tosses. Then,

A= {HTT, THT, TTH},
B={THH, HTH, HHTY},

and
AUB={HTT, THT, TTH, THH, HTH, HHT}.

Notice that (AU B) ={HHH, TTT}, i.e., (AU B)° is the set of sequences of
three tosses that yield either heads or tails three times in a row.

If A and B are sets then the intersection of A and B, denoted AN B, is the
collection of elements that belong to both A and B. We write,

ANB={z|z € A&z € B}.

Alternatively,
AnNB={xe€A|ze€ B}

and
ANB={xeB|xec A}

We then see that
ANBCAand ANBC B.

Example 3.2.5. Let A and B be as in the previous example (see Example
3.2.4). Then, AN B = (), the empty set, i.e., A and B have no elements in
common.

Definition 3.2.6. If A and B are sets, and AN B = (), we can say that A and
B are disjoint.

Proposition 3.2.7 (De Morgan’s Laws). Let A and B be sets.
(i) (AN B)¢ = A°U B¢
(ii) (AU B)¢ = A°N B¢

Proof of (i). Let x € (AN B)°. Then « ¢ AN B. Thus, either v ¢ A or © ¢ B;
that is, x € A° or x € B¢. It then follows that € A°U B¢. Consequently,

(AN B)° C A°U B-. (3.1)

Conversely, if € A°UB¢, then x € A° or x € B¢. Thus, either x € A or x ¢ B;
which shows that € AN B; that is, z € (AN B)°. Hence,

A°UB° C (AN B)“. (3.2)
It therefore follows from (3.1) and (3.2) that
(AN B)¢ = A°U B°.
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Example 3.2.8. Let A and B be as in Example 3.2.4. Then (ANB)¢ = (¢ = C.
On the other hand,

A°= {HHH, HHT, HTH, THH, TTT),

and
B°={HHH, HTT, THT, TTH, TTT}.

Thus A¢ U B¢ = C. Observe that
A°NnB¢={HHH, TTT}.

We can define unions and intersections of many (even infinitely many) sets.

For example, if E, Fo, F3, ... is a sequence of sets, then

o0

U E; = {x]|xisin at least one of the sets in the sequence}
k=1

and

(o9}

ﬂ E, = {x]xisin all of the sets in the sequence}.

k=1

1
Example 3.2.9. Let E = {x eER|0OLz< k} for k=1,2,3,...; then,

G E, =10,1) and ﬁ E* = {0}. (3.3)
k=1 k=1

Solution: To see why the first assertion in (3.3) is true, first note that
E, =[0,1). Also, observe that

E, C Eq, forall k=1,2,3,....

It then follows that -

U Eclo0). (3.4)

k=1
On the other hand, since

By C | Ex,

k=1

it follows that -

0,1) € | J Ex. (3.5)

k=1

Combining the inclusions in (3.4) and (3.5) then yields

U Ek = [Oa 1)7
k=1
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which was to be shown.
o0

To establish the second statement in (3.3), first notice that, if © € ﬂ Ey,
k=1
then xz € Ej, for all k; so that
1
0<x<E, forall k=1,2,3,... (3.6)

1
Now, since klim 7= 0, it follows from (3.6) and the Squeeze Lemma that
hde el

x = 0. Consequently,
ﬂ Ey = {O}a
k=1

which was to be shown. O

Finally, if A and B are sets, then A\B denotes the set of elements in A
which are not in B; we write

AB={zecA|z¢ B}
Example 3.2.10. Let E be an event in a sample space C. Then, C\E = E°.
Example 3.2.11. Let A and B be sets. Then,
r€A\B <= zc€A andz¢B

< z€Aandzxe B
— xe€ANB°

Thus A\B = AN B°.

3.3 More on o—fields

In this section we explore properties of o—fields and present some examples. We
begin with a few consequences of the axioms defining a o—field in Definition
3.1.1.

Proposition 3.3.1. Let C be a sample space and B be a o—field of subsets of C.
(a) If E1,Es, ..., E, € B, then

EiUEyU.---UE, € B.

(b) IfEl,EQ,...,En € B, then

EiNEyn---NE,€B.
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Proof of (a): Let Ey,Es,...,E, € B and define
En+1 = (Z)a En+2 = Q)a En+3 = wv o

Then, by virtue of Axiom 1 in Definition 3.1.1 we can apply Axiom 3 to obtain
that

[j E, € 87
k=1

where

UEk=E1UE2uE3u---uEn,
k=1

as a consequence of the result in part (b) of Problem 1 in Assignment #1. [
Proof of (b): Let E1,FEs,...,E, € B. Then, by Axiom 2 in Definition 3.1.1,
EiES,...,E; € B.
Then, by the result of part (a) in this proposition,
EfUESU---UE; € B.
Thus, by Axiom 2 in Definition 3.1.1,
(EfUESU---UE:)° € B.

Thus, by De Morgan’s Law and the result in part (a) of problem 2 in Assignment

#1,
E.NE;N---NE, €B,

which was to be shown. O

Example 3.3.2. Given a sample space, C, there are two simple examples of
o—field.

(a) B={0,C} is a o—field.
(b) Let B denote the set of all possible subsets of C. Then, B is a o—field.
The following proposition provides more examples of o—fields.

Proposition 3.3.3. Let C be a sample space, and S be a non-empty collection
of subsets of C. Then the intersection of all o-fields that contain S is a o-field.
We denote it by B(S).

Proof. Observe that every o—field that contains S contains the empty set, (), by
Axiom 1 in Definition 3.1.1. Thus, @ is in every o—field that contains S. It then
follows that 0 € B(S).

Next, suppose E € B(S), then E is contained in every o—field which contains
S. Thus, by Axiom 2 in Definition 3.1.1, E¢ is in every o—field which contains
S. It then follows that E¢ € B(S).
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Finally, let (Eq, Es, Es,...) be a sequence in B(S). Then, (E1, Es, E3,...) is
in every o—field which contains §. Thus, by Axiom 3 in Definition 3.1.1,

[ee]
U E
k=1
is in every o—field which contains §. Consequently,

[j E e B(S)

k=1

Remark 3.3.4. B(S) is the “smallest” o—field that contains S. In fact,
S C B(S),

since B(S) is the intersection of all o—fields that contain S. By the same reason,
if £ is any o—field that contains S, then B(S) C £.

Definition 3.3.5. B(S) called the o-field generated by S.

Example 3.3.6. Let C denote the set of real numbers R. Consider the col-
lection, S, of semi-infinite intervals of the form (—oo,b], where b € R; that
is,

S ={(—00,b] | b € R}.

Denote by B, the o—field generated by S. This o—field is called the Borel o—
field of the real line R. In this example, we explore the different kinds of events
in B,.

First, observe that since B, is closed under the operation of complements,
intervals of the form

(—00,b]¢ = (b, +00), for b € R,
are also in B,. It then follows that semi-infinite intervals of the form
(a,4+00), for a € R,

are also in the Borel o—field B,.
Suppose that a and b are real numbers with a < b. Then, since

(a,b] = (—o0,b] N (a, +00),

the half-open, half-closed, bounded intervals, (a,b] for a < b, are also elements
in B,.

Next, we show that open intervals (a,b), for a < b, are also events in B,. To
see why this is so, observe that

(a,b) = fj (a,b ;] . (3.7)

k=1
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To see why this is so, observe that if

then
1
(a,b— k} C (a,b),

since b — % < b. On the other hand, if

1
2 b )
“ k
then
1
b—=| =
(s0-5] -0
It then follows that
> 1
U <a,b - kz} C (a,b). (3.8)
k=1
. .1
Now, for any x € (a,b) we have that b — z > 0; then, since kh 7= 0, we
—00
can find a k, > 1 such that
1
kfo < b—=x
It then follows that
r<b-— i
ko
and therefore
1
h— —
e fos- 1]
Thus,
> 1
T € U (a7b k]
k=1
Consequently,
> 1
b) C b—— 3.9
@iyc (o] (39

Combining (3.8) and (3.9) yields (3.7).
It follows from Axiom 3 and (3.7) that (a,b) is a Borel set.
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3.4 Defining a Probability Function

Given a sample space, C, and a o—field, B, a probability function can be defined
on B.

Definition 3.4.1 (Probability Function). Let C be a sample space and B be a
o—field of subsets of C. A probability function, Pr, defined on B is a real valued
function

Pr: B — R;

that satisfies the axioms:
(1) Pr(C) =1;
(2) Pr(E) >0 for all E € B;

(3) If (Ey,FE2,FE3...) is a sequence of events in B that are pairwise disjoint
subsets of C (i.e., E; N E; = 0 for i # j), then

k=1 k=1

Remark 3.4.2. The infinite sum on the right hand side of (3.10) is to be
understood as

> Pr(Ey) = lim > Pr(E).
k=1 k=1
Notation. The triple (C, B, Pr) is known as a Probability Space.

Remark 3.4.3. The axioms defining probability given in Definition 3.4.1 are
known as Kolmogorov’s Axioms of probability. In the next sections we
present properties of probability that can be derived as consequences of these
axioms.

3.4.1 Properties of Probability Spaces
Throughout this section, (C, B, Pr) will denote a probability space.
Proposition 3.4.4 (Impossible Event). Pr(0)) = 0.

Proof: We argue by contradiction. Suppose that Pr(()) # 0; then, by Axiom 2
in Definition 3.4.1, Pr(f) > 0; say Pr()) = ¢, for some ¢ > 0. Then, applying
Axiom 3 to the sequence (0,0, ...), so that

E,=0, fork=123,...,

we obtain from

o
k=1



3.4. DEFINING A PROBABILITY FUNCTION 21

that -
Pr(f) = > Pr(Ey),

k=1

or
n
e=tm > e
k=1

so that

1= lim n,
n—oo
which is impossible. This contradiction shows that
Pr(0) =0,

which was to be shown. O

Proposition 3.4.5 (Finite Additivity). Let E1, Es, ..., E, be pairwise disjoint

events in B; then,
Pr (U Ek> = Pr(Ey). (3.11)
k=1

k=1

Proof: Apply Axiom 3 in Definition 3.4.1 to the sequence of events
(ElaEQa .. -7ETL7®7®7 . ')a

so that
E,=0, fork=n+1,n+2,n+3,..., (3.12)

to get

k=1 k=1

Thus, using (3.12) and Proposition 3.4.4, we see that (3.13) implies (3.11). O
Proposition 3.4.6 (Monotonicity). Let A, B € B be such that A C B. Then,
Pr(A) < Pr(B). (3.14)

Proof: First, write
B=AU(B\A)

(Recall that B\A = BN A¢; thus, B\A € B.)
Since AN (B\A) = 0,

Pr(B) = Pr(A) + Pr(B\A),

by the finite additivity of probability established in Proposition 3.4.5.
Next, since Pr(B\A) > 0, by Axiom 2 in Definition 3.4.1,

Pr(B) > Pr(4),
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which is (3.14). We have therefore proved that
A C B= Pr(A) < Pr(B).

Proposition 3.4.7 (Boundedness). For any E € B,
Pr(E) < 1. (3.15)

Proof: Since E C C for any F € B, it follows from the monotonicity property
of probability (Proposition 3.4.6) that

Pr(E) < Pr(C). (3.16)
The statement in (3.15) and Axiom 1 in Definition 3.4.1. O
Remark 3.4.8. It follows from (3.15) and Axiom 2 that
0<Pr(F)<1, forall EeB.

It therefore follows that
Pr: B—[0,1].

Proposition 3.4.9 (Probability of the Complement). For any E € B,
Pr(E°) =1-Pr(E). (3.17)

Proof: Since E and E° are disjoint, by the finite additivity of probability (see
Proposition 3.4.5), we get that

Pr(E U E°) = Pr(E) + Pr(E°)

But EU E° = C and Pr(C) = 1 by Axiom 1) in Definition 3.4.1. We therefore
get that
Pr(E°) =1-Pr(E),

which is (3.17). O

Proposition 3.4.10 (Inclusion-Exclusion Principle). For any two events, A
and B, in B,
P(AUB)=P(A)+ P(B)— P(AN B). (3.18)

Proof: Observe first that A C AU B and so we can write,
AUB =AU ((AUB)\A);
that is, AU B can be written as a disjoint union of A and (AU B)\ A, where

(AUB)\A = (AUB)nNA°
=(ANA°)U (BN A9
=0U (BN A9
=BnA°
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Thus, by the finite additivity of probability (see Proposition 3.4.5),
Pr(AuUB) =Pr(4) + Pr(B N A°) (3.19)
On the other hand, AN B C B and so
B=(ANB)U(B\(ANB))
where,
B\(AnB) =BnNn(ANnB)°
= BN (A°N B°)
= (BNA9)U(BNB°)

=(BNA°)UD
= BN A

Thus, B is the disjoint union of AN B and B N A¢. Thus,

Pr(B) =Pr(AN B) + Pr(BN A%, (3.20)
by finite additivity again. Solving for Pr(B N A°€) in (3.20) we obtain

Pr(BN A°) = Pr(B) — Pr(AN B). (3.21)

Consequently, substituting the result of (3.21) into the right—hand side of (3.19)
yields
P(AUB)=P(A)+ P(B)— P(ANB),

which is (3.18). O
Proposition 3.4.11. Let (C,B,Pr) be a probability space. Suppose that
(F41,Es,E5,...)
s a sequence of events in B satisfying
By CEyCE3C -

Then,

nhﬁngo Pr(E,) = Pr (U Ek> .

k=1

Proof: First note that, by the monotonicity property of the probability function,
the sequence (Pr(E})) is a monotone, nondecreasing sequence of real numbers.
Furthermore, by the boundedness property in Proposition 3.4.7,

Pr(Ey) <1, forallk=1,23,...;

thus, the sequence (Pr(Ej)) is also bounded. Hence, the limit lim Pr(E,)

. n—oo
exists.



24

Define the sequence of events By, Bo, Bs, . ..

B
By
Bs

By,

Then, the events By, Bs, B3, ...

Pr (D Bk> = iPT(Bk)7
k=1 k=1

Definition 3.4.1,

where
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by

= El
Ey\ Ey
= E3\E;

= Ep\Ep

are pairwise disjoint and, therefore, by (2) in

> Pr(By) = lim > Pr(By).
k=1 k=1

Observe that

U Be = | Ex- (3.22)
k=1 k=1
(Why?)
Observe also that .
U B = En,
k=1
and therefore .,
Pr(E,) = > Pr(By);
k=1
so that .
nhﬂrr;Q Pr(E,) = nlLrI;O;Pr(Bk)
= ) Pr(By)
k=1
o0
= Pr (U Bk>
k=1
= Pr (U Ek> ., by (3.22),
k=1
which we wanted to show. O
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Example 3.4.12. Let C = R and B be the Borel ofield, B,, in the real line.
Given a nonnegative, bounded, integrable function, f : R — R, satisfying

[ZﬂmmzL

we define a probability function, Pr, on B, as follows

b
Pr((a,t) = [ f(x) da

for any bounded, open interval, (a,b), of real numbers.

Since B, is generated by all bounded open intervals, this definition allows us
to define Pr on all Borel sets of the real line. For example, suppose E = (—o0, b);
then, F is the union of the events

Ey = (—k,b), fork=1,23,...,

where Ey, for kK =1,2,3,... are bounded, open intervals that are nested in the
sense that
E,CECE3C---

It then follows from the result in Proposition 3.4.11 that

Pr(E) = lim Pr(E,) = lim b f(t) dt. (3.23)

n—00 n—oo | .

It is possible to show that, for an arbitrary Borel set, E, Pr(F) can be computed
by some kind of limiting process as illustrated in (3.23).

In the next example we will see the function Pr defined in Example 3.4.12
satisfies Axiom 1 in Definition 3.4.1.

Example 3.4.13. As another application of the result in Proposition 3.4.11,
consider the situation presented in Example 3.4.12. Given an integrable, bounded,
non—negative function f: R — R satisfying

/Zﬂ@M—L

we define
Pr: B, - R

by specifying what it does to generators of B,; for example, open, bounded
intervals:

b
Pr((a,b)) :/ f(z) da. (3.24)

Then, since R is the union of the nested intervals (—k, k), for k =1,2,3,..., it
follows from Proposition 3.4.11 that

n oo

Pr(R) = nhHH;O Pr((—n,n)) = nhﬁrrolO f(z) dz = flz) dz = 1.
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It can also be shown (this is an exercise) that

Proposition 3.4.14. Let (C,B,Pr) be a sample space. Suppose that
(E1,Eq, E3,...)
s a sequence of events in B satisfying
E1DFEy; D k3D -
Then,
lim Pr(E,)= Pr <Q1 Ek> .

Example 3.4.15. [Continuation of Example 3.4.13] Given a € R, observe that

1 1
{a} is the intersection of the nested intervals (a L + k) , fork=1,2,3,...
Then,

1 1
P = lim P - = =)
r({a}) = lim Pr (a —at n) ;
so that, in view of the definition of Pr in (3.24),

a+1l/n
Pr({a}) = lim f(z) dz. (3.25)

n—oo afl/n
Next, use the assumption that f is bounded to obtain M > 0 such that
|f(z)| < M, forallz€eR,

and the corresponding estimate

a+1l/n a+1/n IM
/ flx)dz| < M dr = —, for all n;
a—1/n a—1/n n
so that
a+1l/n
lim f(z) de = 0. (3.26)

n—00 a—1/n

Combining (3.25) and (3.26) we get the result
Pr({a}) = / f(z) dx =0.

3.4.2 Constructing Probability Functions

In Examples 3.4.12-3.4.15 we illustrated how to construct a probability function
on the Borel o—field of the real line. Essentially, we prescribed what the function
does to the generators of the Borel o—field. When the sample space is finite, the
construction of a probability function is more straight forward
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Example 3.4.16. Three consecutive tosses of a fair coin yields the sample space
C={HHH,HHT,HTH, HTT, THH,THT,TTH,TTT}.

We take as our o—field, B, to be the collection of all possible subsets of C.

We define a probability function, Pr, on B as follows. Assuming we have a
fair coin, all the sequences making up C are equally likely. Hence, each element
of C must have the same probability value, p. Thus,

Pr({HHH}) =Pr({HHT})=---=Pr({TTT}) =p.
Thus, by the finite additivity property of probability (see Proposition 3.4.5),
Pr(C) = 8p.

On the other hand, by the probability Axiom 1 in Definition 3.4.1, Pr(C) = 1,
so that

1

qp=1=p=—;

P p g’

thus,
1

Pr({c}) = 3’ for each ¢ € C. (3.27)
Remark 3.4.17. The probability function in (3.27) corresponds to the assump-
tion of equal likelihood for a sample space consisting of eight outcomes. We

say that the outcomes in C are equally likely. This is a consequence of the
assumption that the coin is fair.

Definition 3.4.18 (Equally Likely Outcomes). Given a finite sample space, C,
with n outcomes, the probability function

Pr: B—10,1],

where B is the set of all subsets of C, and given by
1
Pr({c}) = — for each c € C,

corresponds to the assumption of equal likelihood.

Example 3.4.19. Let E denote the event that three consecutive tosses of a
fair coin yields exactly one head. Then, using the formula for Pr in (3.27), and
the finite additivity property of probability,

Pr(E) = Pr({HTT,THT,TTH}) = g.

Example 3.4.20. Let A denote the event a head comes up in the first toss and
B denote the event a head comes up on the second toss in three consecutive
tosses of a fair coin. Then,

A={HHH HHT,HTH HTT}



28 CHAPTER 3. PROBABILITY SPACES

and
B={HHH,HHT,THH,THT)}.

Thus, Pr(A) = 1/2 and Pr(B) = 1/2. On the other hand,
ANB={HHH HHT}

and therefore

Observe that Pr(ANB) = Pr(A)-Pr(B). When this happens, we say that events
A and B are independent, i.e., the outcome of the first toss does not influence
the outcome of the second toss.

3.5 Independent Events

Definition 3.5.1 (Stochastic Independence). Let (C,B,Pr) be a probability
space. Two events A and B in B are said to be stochastically independent, or
independent, if

Pr(An B) =Pr(A) - Pr(B)

Example 3.5.2 (Two events that are not independent). There are three chips
in a bowl: one is red, the other two are blue. Suppose we draw two chips
successively at random and without replacement. Let E; denote the event that
the first draw is red, and F> denote the event that the second draw is blue.
Then, the outcome of F; will influence the probability of E5. For example, if
the first draw is red, then the probability of Fo must be 1 because there are two
blue chips left in the bowl; but, if the first draw is blue then the probability of
E5 must be 50% because there are a red chip and a blue chip in the bowl, and
there are both equally likely of being drawn in a random draw. Thus, F; and F»
should not be independent. In fact, in this case we get P(Ey) = 1, P(E3) = 2
and P(E1 N Ey) = § # %+ 2. To see this, observe that the outcomes of the

3
experiment yield the sample space

C= {RBlvRBQa BlR7 B1B23 BQR7 B2B1}7

where R denotes the red chip and B; and By denote the two blue chips. Observe
that by the nature of the random drawing, all of the outcomes in C are equally
likely. Note that

E, = {RBi,RB-},
EQ = {RBlyRB2731327BZBl};
so that 1 1 1
Pr(F = -4 ===
I'( 1) 6 + 6 37
4 2
Pr(E = ===
r(E) 6 3
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On the other hand,
E1 n EQ = {RBl,RBQ}
so that,

2 1
Pr(E1NEy) = =<
(£, 2) 6 3
Thus, Pr(E; N E3) # Pr(E,) - Pr(E2); and so E; and Es are not independent.

Proposition 3.5.3. Let (C,B, Pr) be a probability space. If E1 and Es are
independent events in B, then so are

(a) E$ and ES

(b) Ef and Es

(¢c) E1 and ES

Proof of (a): Suppose E; and Ey are independent. By De Morgan’s Law
Pr(EfNES) =Pr((E1 N Ey)°) =1—Pr(E; UE,)

Thus,
Pr(EfNES) =1— (Pr(Ey) + Pr(Es) — Pr(E; N Ey))

Hence, since F; and Fs are independent,
Pr(ESNES) =1-—Pr(E)—Pr(Es) + Pr(Fy) - Pr(Es)
— (1-Pr(EY) - (1 - Pr(E)
= P(EY) - P(E35)
Thus, EY and ES are independent. O
Proof of (b): Suppose E; and E» are independent; so that
PI‘(El n EQ) = PI‘(El) . PI‘(EQ)

Observe that E1 N Es is a subset of 5, so that we can write Fy as the disjoint
union of £y N Ey and

Ex\(E1NE;) = Eyn(EyNEye©
= Ey;N(EfUES)
= (ExNEf)U(EyN ES)
= (EfNE)UD

= ESNE,,
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where we have used De Morgan’s and the set theoretic distributive property. It
then follows that

Pr(E3) = Pr(E; N Es) + Pr(E{ N Ey),
from which we get that

Pr(E{ N Ey) = Pr(E2) — Pr(Ey N Ey).
Thus, using the assumption that F; and Fs are independent,

Pr(E{ N E3) = Pr(Ey) — Pr(Ey) - Pr(Es);

S0
Pr(ESNE;) = (1—-Pr(Ey))-Pr(Es)
= P(EY) - P(E),
which shows that EY and E5 are independent. O

3.6 Conditional Probability

In Example 3.5.2 we saw how the occurrence of an event can have an effect on
the probability of another event. In that example, the experiment consisted of
drawing chips from a bowl without replacement. Of the three chips in a bowl,
one was red, the others were blue. Two chips, one after the other, were drawn
at random and without replacement from the bowl. We had two events:

E; :  The first chip drawn is red,
E> :  The second chip drawn is blue.

We pointed out the fact that, since the sampling is done without replacement,
the probability of E5 is influenced by the outcome of the first draw. If a red
chip is drawn in the first draw, then the probability of Es is 1. But, if a blue
chip is drawn in the first draw, then the probability of Fj is % We would like
to model the situation in which the outcome of the first draw is known.

Suppose we are given a probability space, (C,B,Pr), and we are told that
an event, B, has occurred. Knowing that B is true changes the situation. This
can be modeled by introducing a new probability space which we denote by
(B, Bg, Pg). Thus, since we know B has taken place, we take it to be our new
sample space. We define a new o-field, Bg, and a new probability function, Pg,
as follows:

Bg = {ENB|E € B}.
This is a o-field (see Problem 3 in Assignment #2). Indeed,

(i) Observe that ) = BN B € Bp
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(ii) If EN B € Bp, then its complement in B is
B\(ENnB) =BnN(ENB)°
= BN (E°UB°)
= (BNE°)U(BNB°)
=(BNES)UD
=E°NB.
Thus, the complement of £ N B in B is in Bpg.

(iii) Let (E1 NB,EysN B, E3N B,...) be a sequence of events in Bp; then, by
the distributive property,

[j‘EkaE?: ([jEk> NB e Bg.

k=1 k=1

Next, we define a probability function on Bp as follows. Assume P(B) > 0

and define:
Pr(E N B)

Pr(B)
We show that Pp defines a probability function in Bp (see Problem 5 in
Assignment 3).
First, observe that, since

0 CENBCBforall BeB,

Pg(ENB) = , forall FeB.

0<Pr(ENB)<Pr(B) forall Ee€B.
Thus, dividing by Pr(B) yields that
0< Pg(ENB)<1 forall FeB.

Observe also that

Pp(B) =1.

Finally, If E, Es, Es, . .. are mutually disjoint events, then so are E1NB, FoN
B,E3N B,... It then follows that

Pr (G (Ej, N B)) = iPr(Ek N B).

k=1 k=1

Thus, dividing by Pr(B) yields that

Pp ([j(f%fon) ::5§:F§(E¢FMB)
k=1

k=1

Hence, Pg: Bp — [0, 1] is indeed a probability function.
Notation: we write Pg(E N B) as Pr(F | B), which is read ”probability of
E given B” and we call this the conditional probability of E given B.
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Definition 3.6.1 (Conditional Probability). Let (C, B, Pr) denote a probability
space. For an event B with Pr(B) > 0, we define the conditional probability of
any event E given B to be

Pr(EN B)

Pr(E | B) = é)r(B)

Example 3.6.2 (Example 3.5.2 revisited). In the example of the three chips
(one red, two blue) in a bowl, we had

E, ={RBi,RB>}
Ey ={RBy,RBy,B1By, BB}
E{ ={BiR,B1By,B2R,B2B}

Then,

EiNEky= {RBl7RB2}
EynNEf = {BlBg,BgBl}

Then Pr(F;) = 1/3 and Pr(F$) = 2/3 and
PI‘(E1 n E2) = 1/3
Pr(E, N ES) = 1/3

s Pr(E2nEy)  1/3
(Lo M By
Pr(Es | Br) = — gt = 5 -

and
o Pr(B.NES) 1/3
1

These calculations verify the intuition we have about the occurrence of event
F1 have an effect of the probability of event Fs.

3.6.1 Some Properties of Conditional Probabilities
(i) For any events Eq and Es, Pr(Ey N Ey) = Pr(Ey) - Pr(Ey | Ey).

Proof: If Pr(E1) = 0, then from () C Ey N By C E; we get that
0 < PI'(El N EQ) < PI‘(El) =0.

Thus, Pr(E; N E3) = 0 and the result is true.

Next, if Pr(F;) > 0, from the definition of conditional probability we get

that
PI‘(EQ N El)

Pr(Ey)
and we therefore get that Pr(Fy; N Ey) = Pr(Ey) - Pr(Es | Ey). O

PI‘(EQ | El) =
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(ii) Assume Pr(E3) > 0. Events Ey and Es are independent if and only if
Pr(E: | Ep) = Pr(E1).
Proof. Suppose first that Fy and F5 are independent. Then,
Pr(E; N Ey) = Pr(E,) - Pr(Es,),

and therefore

Pr(E, | Es) = Prgzgjﬂ _ Pf(%ﬁ(él;(&) = Pr(Ey).

Conversely, suppose that Pr(F; | E2) = Pr(E7). Then, by the result in
(),
PI‘(El n Eg) = PI’(E
= Pr(E,)-Pr
= Pr(E
= Pr(E;)-Pr

which shows that £y and Es are independent. O
(iii) Assume Pr(B) > 0. Then, for any event E,
Pr(E°| B)=1—-Pr(E | B).

Proof: Recall that Pr(E°|B) = Pg(E°NDB), where Pp defines a probability
function of Bg. Thus, since E°N B is the complement of EN B in B, we

obtain
Pp(E°NB) =1- Py(EN B).
Consequently, Pr(E° | B) =1 —Pr(E | B). O
(iv) We say that events E1, B9, E3, . .., E, are mutually exclusive events if they
are pairwise disjoint (i.e., E; N E; = () for i # j) and

k=1

Suppose also that P(E;) >0 for i =1,2,3,...,n.
Let B be another event in B. Then,

B:BOC:BQOEk: OBOEk
k=1 k=1

Since BN Ey, BN Es,...,BN E, are pairwise disjoint,

P(B) =Y P(BNEy)
k=1

n
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or
n

P(B) =Y P(Ey)- P(B| Ey),
k=1

by the definition of conditional probability. This is called the Law of
Total Probability.

Example 3.6.3 (An Application of the Law of Total Probability). Medical
tests can have false—positive results and false-negative results. That is, a person
who does not have the disease might test positive, or a sick person might test
negative, respectively. The proportion of false—positive results is called the
false—positive rate, while that of false—negative results is called the false—
negative rate. These rates can be expressed as conditional probabilities. For
example, suppose the test is to determine if a person is HIV positive. Let Tp
denote the event that, in a given population, the person tests positive for HIV,
and T denote the event that the person tests negative. Let Hp denote the
event that the person tested is HIV positive and let Hy denote the event that
the person is HIV negative. The false positive rate is Pr(Tp | Hy) and the
false negative rate is Pr(Tn | Hp). These rates are assumed to be known and,
ideally, are very small. For instance, in the United States, according to a 2005
study presented in the Annals of Internal Medicine,* Pr(Tp | Hy) = 1.5% and
Pr(Ty | Hp) = 0.3%. That same year, the prevalence of HIV infections was
estimated by the CDC to be about 0.6%, that is Pr(Hp) = 0.006

Suppose a person in this population is tested for HIV and that the test comes
back positive, what is the probability that the person really is HIV positive?
That is, what is Pr(Hp | Tp)?

Solution:

PI‘(HP n TP) PI‘(TP | HP)PI‘(HP)

Pr(Hp|Te) = =5y = Pr(Tp)

But, by the law of total probability, since Hp U Hy =C,

PI‘(TP) = PI‘(HP)PI‘(TP|HP) + PI"(HN)PI‘(TP ‘ HN)
= PI‘(HP)[l — PI‘(TN | HP)] + PI’(HN)PT(TP | HN)
Hence,
- [1 — PI“(TN | Hp)]PI‘(Hp)
Pr(Hp|Tr) = Pr(Hp)[1 — Pr(Tn)|Pr(Hp) + Pr(Hy)Pr(Tp | Hy)
B (1 —0.003)(0.006)
(0.006)(1 — 0.003) + (0.994)(0.015)°
which is about 0.286 or 28.6%. O

L“Screening for HIV: A Review of the Evidence for the U.S. Preventive Services Task
Force”, Annals of Internal Medicine, Chou et. al, Volume 143 Issue 1, pp. 55-73
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In general, if Pr(B) > 0 and C = F1UE,U---UE,,, where E1, Eo, Fs,..., E,
are mutually exclusive, then

o PUBNE) Pr(BN E;)
Pr(E; | B) = Pr(B) Z’]zzl Pr(E;)Pr(B | Ey)

This result is known as Baye’s Theorem, and is also be written as
Pr(E;)Pr(B | E;
PI‘(EJ|B): - I‘( J) I‘( | J)
> k=1 Pr(Ex)Pr(B | Ex)
Remark 3.6.4. The specificity of a test is the proportion of healthy individuals
that will test negative; this is the same as
1 — false positive rate =1— P(Tp|Hy)
= P(Tp|HN)
= P(Tn|Hn)

The proportion of sick people that will test positive is called the sensitivity
of a test and is also obtained as
1 — false negative rate =1— P(Tn|Hp)
— P(T§|Hp)
= P(Tp|Hp)

Example 3.6.5 (Sensitivity and specificity). A test to detect prostate cancer
has a sensitivity of 95% and a specificity of 80%. It is estimated that, on
average, 1 in 1,439 men in the USA are afflicted by prostate cancer. If a man
tests positive for prostate cancer, what is the probability that he actually has
cancer? Let Ty and Tp represent testing negatively and testing positively,
respectively, and let Cy and Cp denote being healthy and having prostate
cancer, respectively. Then,

Pr(Tp | Cp) = 0.95,
Pr(Ty |Cy) = 0.80,
Pr(Cp) = —— ~ 0.0007,
1439
and
Pr(Cp | Tp) — PHCPOTR) _ PH(CPIPH(Tr | Cp) _ (0.0007)(0.95)
Pr(Tp) Pr(Tp) Pr(Tp) ~’
where
Pr(Tp) = Pr(Cp)Pr(Tp | Cp)+Pr(Cn)Pr(Tp | Cn)
—  (0.0007)(0.95) + (0.9993)(.20) = 0.2005.
Thus,

(0.0007)(0.95)

0.2005
And so if a man tests positive for prostate cancer, there is a less than .4%
probability of actually having prostate cancer.

Pr(Cp | Tp) = = 0.00392.



36

CHAPTER 3. PROBABILITY SPACES



Chapter 4

Random Variables

4.1 Definition of Random Variable

Suppose we toss a coin N times in a row and that the probability of a head is
p, where 0 < p < 1; i.e.,, Pr(H) = p. Then Pr(T) = 1 — p. The sample space
for this experiment is C, the collection of all possible sequences of H’s and T’s
of length N. Thus, C contains 2V elements. The set of all subsets of C, which
contains 22" elements, is the o—field we’ll be working with. Suppose we pick
an element of C, call it ¢. One thing we might be interested in is “How many
heads (H’s) are in the sequence ¢?” This defines a function which we can call,
X, from C to the set of integers. Thus

X(c) = the number of H’s in c.

This is an example of a random variable.
More generally,

Definition 4.1.1 (Random Variable). Given a probability space (C,B,Pr), a
random variable X is a function X : C — R for which the set {c € C | X(c¢) < a}
is an element of the o—field B for every a € R.

Thus we can compute the probability
Pri{ceC | X(c) < a}]
for every a € R.
Notation. We denote the set {c € C | X(c¢) < a} by (X < a).

Example 4.1.2. The probability that a coin comes up head is p, for 0 < p < 1.
Flip the coin N times and count the number of heads that come up. Let X
be that number; then, X is a random variable. We compute the following
probabilities:

P(X <0)=P(X =0)=(1—p)"

P(X<1)=P(X=0)+P(X =1)=(1-p)N + Np(1 —p)N!

37
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There are two kinds of random variables:

(1) X is discrete if X takes on values in a finite set, or countable infinite set
(that is, a set whose elements can be listed in a sequence x1, z2, x3, . . .)

(2) X is continuous if X can take on any value in interval of real numbers.

Example 4.1.3 (Discrete Random Variable). Flip a coin three times in a row
and let X denote the number of heads that come up. Then, the possible values
of X are 0, 1, 2 or 3. Hence, X is discrete.

4.2 Distribution Functions

Definition 4.2.1 (Probability Mass Function). Given a discrete random vari-
able X defined on a probability space (C, B, Pr), the probability mass function,
or pmf, of X is defined by

py(r) =Pr(X =2), forallzeR.

Remark 4.2.2. Here we adopt the convention that random variables will be
denoted by capital letters (X, Y, Z, etc.) and their values are denoted by the
corresponding lower case letters (z, z, z, etc.).

Example 4.2.3 (Probability Mass Function). Assume the coin in Example
4.1.3 is fair. Then, all the outcomes in then sample space

C={HHH HHT,HTH HTT,THH,THT,TTH,TTT}

are equally likely. It then follows that

Pr(X =0)=Pr({TTT}) = é,

Pr(X =1)=Pr({HTT,THT,TTH}) =

)

| w

Pr(X =2)=Pr({HHT,HTH,THH}) =

)

ool w

and
Pr(X = 3) = Pr{HHH}) = é

We then have that the pmf for X is

1/8, if =0
3/8, if z=1;
P (x) =13/8, if z=2;
1/8, if z=3;
0, otherwise.

A graph of this function is pictured in Figure 4.2.1.
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Figure 4.2.1: Probability Mass Function for X

Remark 4.2.4 (Properties of probability mass functions). In the previous ex-
ample observe that the values of p,, are non-negative and add up to 1; that is,

px(x) 2 0 for all 2 and
pr(l') =1
x

We usually just list the values of X for which p, (x) is not 0:
Px(T)), px(xz)v IR pX(ajN)7
in the case in which X takes on a finite number of non—zero values, or

pX(x1)7 pX(:L.Q)’ px(x3),

if X takes on countably many values with nonzero probability. We then have

that
N
pr (z,) =1
k=1

in the finite case, and

in the countably infinite case.

Definition 4.2.5 (Cumulative Distribution Function). Given any random vari-
able X defined on a probability space (C,B,Pr), the cumulative distribution
function, or cdf, of X is defined by

F

X

(x) =Pr(X <z), forallzeR.

Example 4.2.6 (Cumulative Distribution Function). Let (C,B,Pr) and X be
as defined in Example 4.2.3. We compute F', as follows:
First observe that if z < 0, then Pr(X < x) = 0; thus,

F,(x)=0, forallz<D0.
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Note that p, (z) = 0 for 0 < x < 1; it then follows that
F.(z)=Pr(X<z)=Pr(X=0) forO<z<l.

On the other hand, Pr(X < 1) =Pr(X =0)+Pr(X =1)=1/8+3/8 =1/2;
thus,
F.(1)=1/2.

Next, since p, (z) =0 for all 1 < z < 2, we also get that
F (x)=1/2 forl<z<2.
Continuing in this fashion we obtain the following formula for F :

0, if x<0;
1/8, if 0<z<1;

F (x)=1<1/2, if 1<z<2;
7/8, if 2<x<3;
1, if x> 3.

Figure 4.2.2 shows the graph of F .

X
14 —
-
-
*r—
—+—
123 x

Figure 4.2.2: Cumulative Distribution Function for X

Remark 4.2.7 (Properties of Cumulative Distribution Functions). The graph
in Figure 4.2.2 illustrates several properties of cumulative distribution functions
which we will prove later in the course.

(1) F, is non-negative and non-decreasing; that is, F, (x) > 0 for all x € R
and F (a) < F (b) whenever a < b.

(2) lim F,(z)=0 and igrfoo F,(x)=1.

Tr—r—00
(3) F, is right—continuous or upper semi—continuous; that is,
lim F, (x)=F,(a)
z—at

for all a € R. Observe that the limit is taken as x approaches a from the
right.
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Example 4.2.8 (The Bernoulli Distribution). Let X denote a random variable
that takes on the values 0 and 1. We say that X has a Bernoulli distribution
with parameter p, where p € (0,1), if X has pmf given by

1—p, ifx=0;

0, elsewhere.
The cdf of X is then
0, if x < 0;
F (z)=¢1-p, if0<ax<];
1, ifx > 1.

A sketch of Fx is shown in Figure 4.2.3.

F

X

Figure 4.2.3: Cumulative Distribution Function of Bernoulli Random Variable

We next present an example of a continuous random variable.

Example 4.2.9 (Service time at a checkout counter). Suppose you sit by a
checkout counter at a supermarket and measure the time, T, it takes for each
customer to be served. This is a continuous random variable that takes on values
in a time continuum. We would like to compute the cumulative distribution
function F,.(t) = Pr(T < t), for all £ > 0.

Let N(t) denote the number of customers being served at a checkout counter
(not in line) at time ¢. Then N(t) = 1 or N(¢) = 0. Let p(t) = Pr[N(t) = 1]
and assume that p(t) is a differentiable function of t. Note that, for each ¢t > 0,
N(t) is a discrete random variable with a Bernoulli distribution with parameter
p(t). We also assume that p(0) = 1; that is, at the start of the observation, one
person is being served.

Consider now p(t + At), where At is very small; i.e., the probability that
a person is being served at time t + At. Suppose that, approximately, the
probability that service will be completed in the short time interval [¢, ¢ + At] is
proportional to At; say puAt, where p > 0 is a proportionality constant. Then,
the probability that service will not be completed at t + At is, approximately,
1 — puAt. This situation is illustrated in the state diagram pictured in Figure
4.2.4. The circles in the state diagram represent the possible values of N(¢),
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1 — pAt

\_/
JI7AN 3

Figure 4.2.4: State diagram for N (t)

or states. In this case, the states are 1 or 0, corresponding to one person
being served and no person being served, respectively. The arrows represent
approximate transition probabilities from one state to another (or the same) in
the interval from ¢ to ¢ + At. Thus the probability of going from sate N(t) =
1 to state N(t + At) = 0 in that interval (that is, service is completed) is
approximately pAt, while the probability that the person will still be at the
counter at the end of the interval is approximately 1 — pAt.

We may use the information in the state diagram in Figure 4.2.4 and the
law of total probability to justify the following estimation for p(¢ + At), when
At is small:

pt+ A8 ~ p@PIN(+ ALY = 1| N@) =1]
+ (1 —p@))Pr[N(t+ At) =1 | N(t) = 0],
where
Pr[N(t+At) =1| N(t) =1] =~ 1 — pAt,
and
Pr[N(t+ At)=1| N(t) =0] =~ 0,

since there is no transition from state 0 to state 1, according to the state diagram
in Figure 4.2.4. We therefore get that

p(t+ At) =~ p(t)(1 — pAt), for small At,

or
p(t + At) — p(t) =~ —u(At)p(t), for small At.

Dividing the last expression by At # 0 we obtain

p(t = At) — p(t)

e ~ —up(t), for small At #0.

Thus, letting At — 0 and using the the assumption that p is differentiable, we
get
dp

= = —hp(). (4.1)
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Notice that we no longer have and approximate result; this is possible by the
assumption of differentiability of p(t).

Since p(0) = 1, it follows form (4.1) that p(t) = e~ for ¢ > 0.

Recall that T denotes the time it takes for service to be completed, or the
service time at the checkout counter. Thus, the event (T' > t) is equivalent to
the event (N(t) = 1), since T > ¢ implies that service has not been completed
at time t and, therefore, N(t) =1 at that time. It then follows that

Pr[T > 1 = Pr[N(t)=1]

p(_t)t

for all t > 0; so that
Pr[T <tj=1—-e*  fort>0.
Thus, T is a continuous random variable with cdf

1—e#  ift>0;
0, elsewhere.

A graph of this cdf for ¢ > 0 is shown in Figure 4.2.5.

[T T T T [ T T T T [T T T T[T T T T T TTT1]
o 1 2 3 a =
x

Figure 4.2.5: Cumulative Distribution Function for T'

Definition 4.2.10 (Probability Density Function). Let X denote a continuous
random variable with cdf F, (z) = Pr(X < z) for all z € R. Assume that F,
is differentiable, except possibly at countable number of points. We define the
probability density function (pdf) of X to be the derivative of F, wherever F
is differentiable. We denote the pdf of X by f, and set

F) (x), if Fy is differentiable at a;
fx(x) =
0, elsewhere.
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Example 4.2.11. In the service time example, Example 4.2.9, if T' is the time
that it takes for service to be completed at a checkout counter, then the cdf for
T is as given in (4.2),

1—e #  fort>0;
(t)=
0, elsewhere.

It then follows from Definition 4.2.10 that

e Mt fort > 0;
fo(t) = {“

0, elsewhere,

is the pdf for T, and we say that T follows an exponential distribution
with parameter 1/u. We will see the significance of this parameter in the next
chapter.

In general, given a function f: R — R, which is non—negative and integrable
with

/_O;f(:v) dr=1,

f defines the pdf for some continuous random variable X. In fact, the cdf for
X is defined by

FX(m):/j f(t) dt for all z € R.

Example 4.2.12. Let a and b be real numbers with a < b. The function

if a<x<b,
b—a
flz) =

0 otherwise,

/_O;f(x)dx:/abbiadle,

Definition 4.2.13 (Uniform Distribution). A continuous random variable, X,
having the pdf given in the previous example is said to be uniformly distributed
on the interval (a,b). We write

defines a pdf since

and f is non—negative.

X ~ Uniform(a, b).

Example 4.2.14 (Finding the distribution for the square of a random variable).
Let X ~ Uniform(—1,1) and Y = X? give the pdf for Y.
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Solution: Since X ~ Uniform(—1,1) its pdf is given by

1.
5 if —1l<x<l,
fx(@) =

0  otherwise.

We would like to compute f, (y) for 0 < y < 1. In order to do this, first we
compute the cdf F,, (y) for 0 <y < 1:

v(y) = Pr(Y <y), for0<y<1,

| Il
oo™
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<
=

by the Chain Rule, so that

fy(y) = fx(\/?j) i +f;(_\/§)

NG

for 0 < y < 1. We then have that

1
—, if O<y<1;
Hly) =42y

0, otherwise.



46

CHAPTER 4. RANDOM VARIABLES



Chapter 5

Expectation of Random
Variables

5.1 Expected Value of a Random Variable

Definition 5.1.1 (Expected Value of a Continuous Random Variable). Let X
be a continuous random variable with pdf f,. If

/ el (@) de < oo,

we define the expected value of X, denoted E(X), by

B(X) = /O; of, (@) da.

Example 5.1.2 (Average Service Time). In the service time example, Example
4.2.9, we showed that the time, 7', that it takes for service to be completed at
checkout counter has an exponential distribution with pdf

pe Ht for t > 0;
fT (t) - .
0, otherwise,

where p is a positive constant.

47
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Observe that
/ [t f.(t) dt = / tpue Mt dt
—0o0 0

b
= lim t pe Mt dt

b—oo J

1 b
= lim {—te"“ﬁ - e_“t]
b—o0 0

1 1
= lim { —be M e"b}
b— o0 y2i 1%

where we have used integration by parts and L’Hospital’s rule. It then follows
that

e 1

[ =3 <o
) H

and therefore the expected value of T' exists and

E(T) = / tf,(t) dt :/0 tpue Mt dt = %

Thus, the parameter pu is the reciprocal of the expected service time, or average
service time, at the checkout counter.

Example 5.1.3. Suppose the average service time, or mean service time, at
a checkout counter is 5 minutes. Compute the probability that a given person
will spend at least 6 minutes at the checkout counter.

Solution: We assume that the service time, T, is exponentially distributed

with pdf
e
where = 1/5. We then have that
Pr(T > 6) = /600 [ (t) dt = /600 %e*t/f’ dt = e¢79/% ~ 0.30.
Thus, there is a 30% chance that a person will spend 6 minutes or more at the

checkout counter. O

Definition 5.1.4 (Exponential Distribution). A continuous random variable,
X, is said to be exponentially distributed with parameter 5 > 0, written

X ~ Exponential(3),
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if it has a pdf given by

1
/8§
e or z >0,
8

fx(x) -

0 otherwise.

The expected value of X ~ Exponential(3), for 8 > 0, is E(X) = .

Example 5.1.5 (A Distribution without Expectation). Let X ~ Uniform(0, 1)
and define Y = 1/X. We determine the distribution for ¥ and show that ¥
does not have an expected value. In order to do this, we need to compute f, (y)
and then check that the integral

does not converge.

/ Tt ) dy

To find f, (y), we first determine the cdf of Y. Observe that possible values
for Y are y > 1, since possible values for X are 0 < z < 1.

F,(y)

Pr(Y <y), for 1<y<oo,

Pr(1/X <vy)

Pr(X >1/y)

Pr(X > 1/y), (since X is continuous),

1-Pr(X <1/y)
1-F (1/y).

Differentiating with respect to y we then obtain

We then have that

fy ()

d
= —F,(y), for 1<y< oo,

pi

= @(1—Fx(1/y))

- —F;<1/y>%<1/y>

1
= fx(l/y)yig

1

" if l<y<oo

fy(y> =
0 if y<1.
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<
ly|— dy
/1 y?

b1
lim — dy
b—oo J1 Y

Next, compute

/_Oo lylfy (y) dy

= lim Inb = oo.
b—o0

Thus,
/ w1, () dy = oo.

Consequently, Y = 1/X has no expectation.

Definition 5.1.6 (Expected Value of a Discrete Random Variable). Let X be
a discrete random variable with pmf p . If

D lzlpy (x) < o,
we define the expected value of X, denoted F(X), by

E(X) =Yz p,(a).

Thus, if X has a finite set of possible values, z1,x2,...,z,, and pmf p,
then the expected value of X is

E(X)= Zazk Py (k).
k=1

On the other hand if X takes on a sequence of values, z1,x2,x3, ..., then the
expected value of X exists provided that

Z |xk|py (25) < o0. (5.1)
k=1

If (5.1) holds true, then

E(X)= ixk Py (k).

Example 5.1.7. Let X denote the number on the top face of a balanced die.
Compute E(X).

Solution: In this case the pmf of X is p, (z) = 1/6 for xz = 1,2,3,4,5,6,
zero elsewhere. Then,

6 6
E(X)=) kp(k)=> k-
k=1

k=1

7
= - =3.5.
2

| =
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Definition 5.1.8 (Bernoulli Trials). A Bernoulli Trial, X, is a discrete ran-
dom variable that takes on only the values of 0 and 1. The event (X = 1) is
called a “success”, while (X = 0) is called a “failure.” The probability of a
success is denoted by p, where 0 < p < 1. We then have that the pmf of X is

1—p ifz=0,
px(x)=<p if =1,
0 elsewhere.

If a discrete random variable X has this pmf, we write
X ~ Bernoulli(p),

and say that X is a Bernoulli trial with parameter p.

Example 5.1.9. Let X ~ Bernoulli(p). Compute E(X).
Solution: Compute E(X)=0-p,(0)+1-p, (1) =p, O

Example 5.1.10 (Expected Value of a Geometric Distribution). Imagine an
experiment consisting of performing a sequence of independent Bernoulli trials
with parameter p, with 0 < p < 1, until a 1 is obtained. Let X denote the
number of trials until the first 1 is obtained. Then X is a discrete random
variable with pmf

(1—p)=lp, fork=1,2,3,...;
px (k) = (5.2)
0, elsewhere.

To see how (5.2) comes about, note that X = k, fork > 1, if there are k — 1

zeros before the kth one, and the outcomes of the trials are independent. Thus,
in order to show that X has an expected value, we need to check that

i k(1 —p)*p < cc. (5.3)

k=1

Observe that J
(1 =) = —k(1 — p)F 1L
dp[( p)"] (1-p)" 5

thus, the sum in (5.3) can be rewritten as

S k(1 -p)p=—p> (1 - p)f] (5.4)

k=1 k=1
Interchanging the differentiation and the summation in (5.4) we have that

oo

> k(1-p)flp= *p% [Z(l p)k] : (5.5)

k=1
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Then, adding up the geometric series on the right-hand side of (5.5),
> d 1-p
k(1 —p k_lp: P |::| )
2 M=) & [T=T-7)
from which we get that
oo
d |1 1 1
Sut e [Py [ 4]
k=1

We have therefore demonstrated that, if X ~ Geometric(p), with 0 < p < 1,
then F(X) exists and

Definition 5.1.11 (Independent Discrete Random Variable). Two discrete ran-
dom variables X and Y are said to independent if and only if

PriX=2Y=y) =Pr(X =z) -Pr(Y =y)
for all values, x, of X and all values, y, of Y.

Note: the event (X = z,Y = y) denotes the event (X = z) N (Y = y); that is,
the events (X = z) and (Y = y) occur jointly.

Example 5.1.12. Suppose X; ~ Bernoulli(p) and X5 ~ Bernoulli(p) are inde-
pendent random variables with 0 < p < 1. Define Y5 = X; 4+ X5. Find the pmf
for Y3 and compute E(Y3).

Solution: Observe that Y5 takes on the values 0, 1 and 2. We compute

Pr(Yo=0) = Pr(X;=0,X2=0)
= Pr(X; =0)-Pr(Xy=0), by independence,
= (I-p)-(1-p)
= (1-p?
Next, since the event (Yo = 1) consists of the disjoint union of the events

(Xl = ].,XQ = 0) and (Xl = 0,X2 = 1),
PT(YFQ = 1) = Pl"(Xl = ].,XQ = 0) + Pr(X1 = 0,X2 = 1)
== PI‘(X1 == 1) . PI‘(X2 == 0) + PI‘(X1 = 0) . PY(XQ = 1)
= pl-p)+(1-pp
= 2p(1-p).

Finally,



5.1. EXPECTED VALUE OF A RANDOM VARIABLE 53

We then have that the pmf of Y5 is given by

(1-p? ify=0,
~J2p(1—p) ify=1,
py2 (y) - p2 if y = 2’

0 elsewhere.

To find E(Y3), compute

E(Y2) = 0:-p,(0)+1-p,(1)+2-py,(2)
= 2p(1—p) + 2p*
= 2p[(1—p)+p]
= 2p.

O

We shall next consider the case in which we add three mutually independent
Bernoulli trials. Before we present this example, we give a precise definition of
mutual independence.

Definition 5.1.13 (Mutual Independent Discrete Random Variable). Three
discrete random variables Xi, X5 and X3 are said to mutually independent
if and only if

(i) they are pair-wise independent; that is,
Pr(X; =;,X;, =x;) =Pr(X;, = ;) - Pr(X; = ;) for i+#j,
for all values, z;, of X; and all values, x;, of Xj;
(ii) and

PI‘(Xl = xl,Xg = CEQ,Xg = {Iid) = PI‘(Xl = xl)-Pr(Xg = {EQ)-PI'(Xg = xd)

Lemma 5.1.14. Let X1, X2 and X3 be mutually independent, discrete random
variables and define Yo = X1 4+ Xao. Then, Yo and X3 are independent.

Proof: Compute

PriYo=w,Xs5=2) = Pr(Xj+Xeo=w,X5=2)
= ZPr(Xlzx,Xzzw—x,ngz),

where the summation is taken over possible value of X;. It then follows that

Pr(Yo=w,X5=2) = ZPr(Xl =) Pr(Xs =w—1x) Pr(X3 = 2),
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where we have used (ii) in Definition 5.1.13. Thus, by pairwise independence,
(i.e., (i) in Definition 5.1.13),

Pr(Yo=w,X5=2) = <Z Pr(X;=z) Pr(Xg=w— J;)) -Pr(Xs =2)

Pr(X: 4+ Xo =w) - Pr(X3 = 2)
= Pr(Yas =w)- Pr(Xs3 = 2),
which shows the independence of Y5 and X3. O

Example 5.1.15. Suppose X;, X5 and X3 be three mutually independent
Bernoulli random variables with parameter p, where 0 < p < 1. Define Y5 =
X1+ X2 + X5. Find the pmf for Y3 and compute E(Y3).

Solution: Observe that Y3 takes on the values 0, 1, 2 and 3, and that

Y3 =Y2 + Xj,

where the pmf and expected value of Y5 were computed in Example 5.1.12.
We compute

Pr(Y3=0) = Pr(Y2=0,X;5=
= Pr(Y2 =0)-Pr(X;3 =0), by independence (Lemma 5.1.14),
= (1-p?-(1-p)
= (1-p)?
Next, since the event (Y3 = 1) consists of the disjoint union of the events

(Y2 =1,X3=0) and (Y2 =0, X3 = 1),

PI‘(YQ, = ].) = (Y2 = ].,Xg = 0) + PT(YQ = 0 X3 = 1)
= r(Y2 = ].) PI'(X3 = 0) + PI’(YQ = 0) PI(X3 = ].)
= 2p(1—p)(1—p)+(1-p)’p
= 3p(1-p)*
Similarly,
PI’(Yg = 2) = PT(YQ 2,X3 = 0) + PT(YQ = ].,Xg = ].)
= Pr(Ya=2) Pr(Xs=0)+Pr(Yy = 1) Pr(Xs = 1)
= p*(1—p)+2p(1—p)p
= 3p*(1-p),
and
P(Yg—?)) = PI’YQ—Q,XgZ
= PI’(YQ 0) - PI‘(X3 == 0)
— 2
= p3 .
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We then have that the pmf of Y3 is

3p(1—p)* ify=1,
Py, (y) = {3p*(1—p) ify=2,

P’ if y =3,
0 elsewhere.
To find E(Y3), compute
E(Y;) = ()+1 py?,()+2-py3(2)+3-py3(3)

( p)?+2-3p*(1—p)+3p°
3pl(1 —p)? +2p(1 — p) +p?
3p[( p) +p)?

O

If we go through the calculations in Examples 5.1.12 and 5.1.15 for the case of
four mutually independent® Bernoulli trials with parameter p, where 0 < p < 1,
X1, Xo, X3 and X4, we obtain that for Y; = X7 + Xo + X35+ X4,

(1 - p)4 lf y= 07
Ap(1—p)*  ify=1,

2(1—p)? ify=2
P = 0

-p ify=3
p* if y = 4,
0 elsewhere,
and
E(Yy) = 4p.

Observe that the terms in the expressions for p, (v), py, (v) and p,, (y) are the
terms in the expansion of [(1 — p) + p|™ for n = 2,3 and 4, respectively. By the
Binomial Expansion Theorem,

where

n n!
=" k=012...
(k) Kl(n— k) 0.1,2....m,

1Here, not only do we require that the random variable be pairwise independent, but also
that for any group of k > 2 events (X; = x;), the probability of their intersection is the
product of their probabilities.
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are the called the binomial coefficients. This suggests that if
Yo=X1+Xo+ -+ Xy,

where X1, Xo,..., X, are n mutually independent Bernoulli trials with param-
eter p, for 0 < p < 1, then

Py, (k) = (Z)pk(l —p)"F for k=0,1,2,...,n.
Furthermore,
E(Y,) = np.
We shall establish this as a the following Theorem:

Theorem 5.1.16. Assume that X1, Xo, ..., X,, are mutually independent Bernoulli
trials with parameter p, with 0 < p < 1. Define

Y, = X1+ Xo+ -+ X

Then the pmf of Y, is

pYn (k) = <Z)pk(1p)nk fOT’k:O,l,2,...,TL7
and
E(Y,) = np.

Proof: We prove this result by induction on n. For n = 1 we have that Y7 = X3,
and therefore
Dy, 0)=Pr(X;=0=1-p

and
Py, (1) =Pr(X1 =1) =p.
Thus,
1—p ifk=0,
pyl(k): D if k=1,
0 elsewhere.

1 1
Observe that (0> = (1) = 1 and therefore the result holds true for n = 1.

Next, assume the theorem is true for n; that is, suppose that

pyn(k): (Z)pk(l_p)nk fork:071727"'7n7 (5'6)

and that
E(Y,) = np. (5.7)
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We need to show that the result also holds true for n + 1. In other words,
we show that if X7, Xs,..., X,,, X;,+1 are mutually independent Bernoulli trials
with parameter p, with 0 < p < 1, and

Yop1= X1+ Xo4 -+ Xp + Xt (5.8)

then, the pmf of Y,,1; is

1
Py, (k) = <n;€&— )pk(l —p)"F for k=0,1,2,...,n,n +1, (5.9)

and
E(Yny1) = (n+1)p. (5.10)

From (5.10) we see that
Yn+1 = Yn + X’n+17

where Y,, and X, 11 are independent random variables, by an argument similar
to the one in the proof of Lemma 5.1.14 since the X} s are mutually independent.
Therefore, the following calculations are justified:

(i) for k < n,

Pr(Yop1=k) = Pr(Yo=k Xp1 =0)+Pr(Yy=k—1,X, 11 =1)

= Pr(Y, = k) Pr(Xps1 = 0)
+Pr(Y, =k—1)-Pr(X,,-1 =1)

<Z>pk(1 —p)" "1 -p)
" (k : 1)?’”(1 ey,

where we have used the inductive hypothesis (5.6). Thus,

Prtvi =0 = (1) (") [pra-are

The expression in (5.9) will following from the fact that

n n n+1
() (20 = (")
which can be established by the following counting argument:

Imagine n + 1 balls in a bag, n of which are blue and one is
red. We consider the collection of all groups of k balls that can
be formed out of the n + 1 balls in the bag. This collection is
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made up of two disjoint sub—collections: the ones with the red
ball and the ones without the red ball. The number of elements
in the collection with the one red ball is

(20)-()-G2)

while the number of elements in the collection of groups without

the red ball are
n
i)

1
Adding these two must yield <n ;r >

(ii) If k =n+1, then

Pr(Yor1=k) = Pr(Yo=n,X,11=1)
= Pr(Y,=n) Pr(X,41=1)
= p'p
— pn+1

since k =n + 1.

Finally, to establish (5.10) based on (5.7), use the result of Problem 2 in
Assignment 10 to show that, since Y,, and X,, are independent,

E(Yyi1) = E(Yn + Xot1) = E(Ya) + E(Xpy1) =np+p=(n+1)p.
O

Definition 5.1.17 (Binomial Distribution). Let n be a natural number and
0 < p < 1. A discrete random variable, X, having pmf

px(k) = <Z>pk(1_p)n_k fork=0,1,2,...,n,
is said to have a binomial distribution with parameters n and p.
We write X ~ Binomial(n, p).

Remark 5.1.18. In Theorem 5.1.16 we showed that if X ~ Binomial(n,p),
then
E(X) = np.

We also showed in that theorem that the sum of n mutually independent
Bernoulli trials with parameter p, for 0 < p < 1, follows a Binomial distri-
bution with parameters n and p.
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Definition 5.1.19 (Independent Identically Distributed Random Variables). A
set of random variables, { X7, Xs,..., X, }, is said be independent identically
distributed, or iid, if the random variables are mutually disjoint and if they
all have the same distribution function.

If the random variables X7, Xs,..., X, are iid, then they form a simple
random sample of size n.

Example 5.1.20. Let Xy, X5, ..., X, be asimple random sample from a Bernoulli(p)
distribution, with 0 < p < 1. Define the sample mean X by

X1+ Xo+--+ X,
~ .

Y:

Give the distribution function for X and compute E(X).

Solution: Write Y = nX = X;+Xo+---+X,,. Then, since X1, Xo,..., X,
are iid Bernoulli(p) random variables, Theorem 5.1.16 implies that Y ~ Binomial(n, p).
Consequently, the pmf of Y is

py (k) = <Z>p’“<1 —p)"" fork=0,1,2,...,n,

and E(Y) = np.
— 1 2 n—1
Now, X may take on the values 0, —, —,. ,1, and
nn n
— 1 2 -1
Pr( X =2)=Pr(Y =nz) forz=0—,—,. n .1
nn n
so that
— 1 2 -1
Pr(X =xz)= <n)pm(1—p)"m forx =0,—,—,. n , 1.
nx n'n n
The expected value of X can be computed as follows
BX) = B(5Y) = 2B = ) =
o n T n TR\ =P

Observe that X is the proportion of successes in the simple random sample. It
then follows that the expected proportion of successes in the random sample is
p, the probability of a success. O

5.2 Properties of Expectations

5.2.1 Linearity
We have already mentioned (and used) the fact that

E(X +Y) = E(X) + E(Y), (5.11)
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for the case of independent, discrete random variable X and Y (see Problem 6
in Assignment #5). The expression in (5.11) is true in general, regardless of
whether or not X are discrete or independent. This will be shown to be the
case in the context of joint distributions in a subsequent section.

We can also verify, using the definition of expected value (see Definition 5.1.1
and ) that, for any constant c,

E(cX) = cE(X). (5.12)

The expressions in (5.11) and (5.12) say that expectation is a linear operation.

5.2.2 Expectations of Functions of Random Variables
Example 5.2.1. Let X denote a continuous random variable with pdf

322 if0<z <1,
Fu@) = {0 otherwise.

Compute the expected value of X?2.
We show two ways to compute E(X).

(i) First Alternative. Let Y = X? and compute the pdf of Y. To do this, first
we compute the cdf:

F,(y) = Pr(Y <y), forO<y<1,
= Pr(X2<y)
= Pr(|X] <)
= Pr(—y <|X| <)
= Pr(—y <|X| < ¥), since X is continuous,
= FX(\/@)_FX(_\/Q)
= Fx(\/?%

since f, is 0 for negative values.

It then follows that

fiw) = F;wg)-d%(m
1
= fx(\/@‘ﬁ
= 35
i

for 0 <y < 1.
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Consequently, the pdf for Y is

g\/gj fo<y<1,

0 otherwise.

fy(y) -

Therefore,
E(X?) = E(Y)

/ O; yfy (y) dy

L3
/y§\/§dy

0

3 1
= */yg/zdy
0

[\)

(231 )

Tl w N w

(ii) Second Alternative. Alternatively, we could have compute E(X?) by eval-

i
uating N X
/ 22 f (x) dz = /0 22 - 322 dx

— 00

3

g¢
The fact that both ways of evaluating F(X?) presented in the previous
example is a consequence of the following general result.

Theorem 5.2.2. Let X be a continuous random variable and g denote a con-
tinuous function defined on the range of X. Then, if

/ T @) f (2) dr < oo,

— 00

E(g(X)) = /OO g(x)fy () d.

— 00
Proof: We prove this result for the special case in which g is differentiable with
g'(x) > 0 for all z in the range of X. In this case g is strictly increasing and
it therefore has an inverse function g~! mapping onto the range of g o X and
which is also differentiable with derivative given by

d 1 1

dy o™ )] = g g )’
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where we have set y = g(z) for all  in the range of X, or Y = ¢g(X). Assume
also that the values of X range from —oo to oo and those of Y also range from
—00 to 0o. Thus, using the Change of Variables Theorem, we have that

o >0 . L
[mg(z)fx(x) de = [wyfx(g (y)) 9~ (1)) dy,

since © = g~ !(y) and therefore

dz -t dy = d
dy W) dy g )
On the other hand,
Fy(y) = Pr(Y <y
= Pr(g(X) <y)
= Pr(X<gl(y
= F.(97'(v),
from which we obtain, by the Chain Rule, that
Fo) = Il )
* 997 (W)
Consequently,
| whwa= [ g@f d
or

O

Theorem 5.2.2 also applies to functions of a discrete random variable. In
this case we have

Theorem 5.2.3. Let X be a discrete random variable with pmfp., and let g
denote a function defined on the range of X. Then, if

Z 9(z)|px () < oo,
X)) => glz)p, ()

5.3 Moments

Theorems 5.2.2 and 5.2.3 can be used to evaluate the expected values of powers
of a random variable

E(Xm):/ 2" f () de, m=0,1,2,3,...,

— 00
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in the continuous case, provided that

|l de <o, m=0123

— 00

In the discrete case we have

E(X™) =Y a"p.(x), m=0,1,23,...,

provided that
3 Jempy (2) <00, m=0,1,2,3,....
Definition 5.3.1 (mth Moment of a Distribution). E(X™), if it exists, is called

the mth moment of X for m =0,2,3,...
Observe that the first moment of X is its expectation.

Example 5.3.2. Let X have a uniform distribution over the interval (a,b) for
a < b. Compute the second moment of X.
Solution: Using Theorem 5.2.2 we get

By = [ an

where 1
ifa <z <b,
b—a
fx(x):
0 otherwise.
Thus,
2 b a?
E(X = d
(X?) .
1 23 b
- [b—aBL
1
— b3_ 3
Sh—a) &)
B b2 + ab + a?
3

5.3.1 Moment Generating Function

Using Theorems 5.2.2 or 5.2.3 we can also evaluate F(e!X) whenever this ex-
pectation is defined.
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Example 5.3.3. Let X have an exponential distribution with parameter g > 0.
Determine the values of t € R for which E(e!¥) is defined and compute it.
Solution: The pdf of X is given by

1
Beﬂ”/ﬁ ifx >0,
fx (Qf) =

0 if £ <0.

Then

)

B(etX) — /w ¢ f (z) dz

—0o0
1 oo
= etTe=*/B g

E 0
1 (o9}
_ 1 ~[/p)~tz g
= e xX.
o,

We note that for the integral in the last equation to converge, we must require
that

t<1/p.
For these values of ¢ we get that
1 1
EEX) = -« ——
)= 5w
B 1
1 -pt

O

Definition 5.3.4 (Moment Generating Function). Given a random variable X,
the expectation E(e!X), for those values of ¢ for which it is defined, is called the
moment generating function, or mgf, of X, and is denoted by v, (t). We
then have that

Uy (t) = B(e"),

whenever the expectation is defined.

Example 5.3.5. If X ~ Exponential(8), for 8 > 0, then Example 5.3.3 shows
that the mgf of X is given by

U (t) = 1_1& fort<%.

Example 5.3.6. Let X ~ Binomial(n,p), for n > 1 and 0 < p < 1. Compute
the mgf of X.
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Solution: The pmf of X is

pX(k)<Z>pk(1p)nk fork:07172""7n’

and therefore, by the law of the unconscious statistician,

Ux(t) = E(e™)

k=1
= (o
- é(g)@ew’fu—p)"—k
= (pe' +1-p)",

where we have used the Binomial Theorem.
We therefore have that if X is binomially distributed with parameters n and
p, then its mgf is given by

P (t) = (1 —p+pe")* forallteR.

5.3.2 Properties of Moment Generating Functions

First observe that for any random variable X,
U5 (0) = E(e*¥) = E(1) = 1.

The importance of the moment generating function stems from the fact that,
if 1, (t) is defined over some interval around ¢ = 0, then it is infinitely differ-
entiable in that interval and its derivatives at ¢ = 0 yield the moments of X.
More precisely, in the continuous cases, the m—the order derivative of ¢, at ¢
is given by

Pm™(t) = / 2™ f (z) dz, forallm=0,1,2,3,...,

and all ¢ in the interval around O where these derivatives are defined. It then
follows that

»M(0) = / 2" f(z) de = E(X™), forallm=0,1,2,3,....

— 00
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Example 5.3.7. Let X ~ Exponential(8). Compute the second moment of X.
Solution: From Example 5.3.5 we have that

1 1
=—— f —.
Py (1) T ort < 3
Differentiating with respect to ¢t we obtain
B 1
") = ——— fort< =
=T mr 5
and g
,, 2 1
t)=———= fort<-.
vl a-pp B
It then follows that E(X?) = ¢ (0) = 242 O

Example 5.3.8. Let X ~ Binomial(n,p). Compute the second moment of X.
Solution: From Example 5.3.6 we have that

Y (t) = (1 —p+pe)™ forallteR.
Differentiating with respect to ¢t we obtain

Y (t) = npe' (1 —p + pe')" !

and
UL(t) = npe'(1—p+pe’) !+ npe'(n — L)pe’ (1 —p+pe')—2
= npe'(1—p+pe")" " +n(n—1)p*e* (1 — p+pe')" 2
It then follows that E(X?) =4 (0) = np + n(n — 1)p*. O

A very important property of moment generating functions is the fact that
¥, if it exists in some open interval around 0, completely determines the distri-
bution of the random variable X . This fact is known as the Uniqueness Theorem
for Moment Generating Functions.

Theorem 5.3.9 (Uniqueness of Moment Generating Functions). Let X and
Y denote two random variables with moment generating functions ¢, and ..,
respectively. Suppose that there exists § > 0 such ¥, (t) = ¢, (t) for =6 <t <.

Then, X and Y have the same cumulative distribution functions; that is,
F.(z)=F,(z), forallzeR.

A proof of this result may be found in an article by J. H. Curtiss in The
Annals of Mathematical Statistics, Vol. 13, No. 4, (Dec., 1942), pp. 430-433.
We present an example of an application of Theorem 5.3.9

Example 5.3.10. Suppose that X is a random variable with mgf
1

Compute Pr(X > 2).
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Solution: Since the function in (5.13) gives the mgf of an Exponential(2)
distribution, by the Uniqueness of Moment Generating Functions X must have
an exponential distribution with parameter 2; so that

1—e %2 forxz>0;
F — 9 )
x (@) {0, for z < 0.
Thus, Pr(X >2)=1-F,(2) =e" . O

Example 5.3.11. Let z1,x9,...,z, denote real values. Let pi,p2,...,p, de-
note positive values satisfying

> pe=1.
k=1
Then, the function ¢, : R — R given by

Yy (1) = pre™t + pae®?t + - f ppe®t,  fort € R,

defines the mgf of a discrete random variable, X, with pmf

pr, ifx=uwzy, for k=1,2,... n;
px () =
0, elsewhere.

Example 5.3.12. Let 5 be a positive parameter and a € R. Find the distri-
bution of a random variable, Y, with mgf
e 1
= fort < —. 5.14
-3t ort < 3 ( )
Solution: By the result in Example 5.3.5, if X ~ Exponential(53), the X
has mgf

¥y (t)

¥y (t) = 1%& for t < % (5.15)

Consider the random variable Z = X + a and compute
b, (t) = B(e'?),

to get
U, (t) = E(eXFY)

— E(etX—i-at)

— E(eatetX);

so that, using the linearity of the expectation,

v, () = e B(e),
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or
b, (t) = e (t), fort < %.

It then follows from (5.15) and (5.16) that

eat

wz(t)zl_ﬂt, fort<%.

Comparing (5.14) and (5.17), we see that

Yy (1) = g (t), fort< %;

(5.16)

(5.17)

consequently, by the Uniqueness Theorem for mgf, Y and Z = X + a have the

same cdf. We then have that

F,(y)=F, _(y), forallyeR.

X+a

Thus, for y € R,
v(y) = Pr(X+a<y)

Hence, the pdf of Y is

or

0, if y < a.

Figure 5.3.1 shows a sketch of the graph of the pdf of Y for the case g =1. O

fy

Figure 5.3.1: Sketch of graph of f,
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5.4 Variance

Given a random variable X for which an expectation exists, define
w=E(X).

i is usually referred to as the mean of the random variable X. For given
m=1,2,3,...,if E(|X — p|™) < o0,

E[(X = p)™]

is called the mth central moment of X. The second central moment of X,

E[(X - ,u')z]v
if it exists, is called the variance of X and is denoted by Var(X). We then
have that

Var(X) = E[(X — )2
provided that the expectation and second moment of X exist. The variance of
X measures the average square deviation of the distribution of X from its
mean. Thus,
E[(X — p)?]

is a measure of deviation from the mean. It is usually denoted by ¢ and is called
the standard deviation form the mean. We then have

Var(X) = 2.
We can compute the variance of a random variable X as follows:

Var(X) = E[(X —p)?
E(X2—2,uX+u)
= B(X*) - 2uB(X) + p*E(1))
E(X
E(X

2)—2u A+ p?
%) —

Example 5.4.1. Let X ~ Exponential(ﬁ). Compute the variance of X.
Solution: In this case p = E(X) = 3 and, from Example 5.3.7, F(X?) =
2/32. Consequently,

Var(X) = B(X?) — p? = 25 — 3 = §°.

Example 5.4.2. Let X ~ Binomial(n,p). Compute the variance of X.
Solution: Here, u = np and, from Example 5.3.8,

E(X?) =np+n(n—1)p?
Thus,
Var(X) = E(X?) — g = np +n(n — 1)p?> = n’p* = np(1 — p).
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Chapter 6

Joint Distributions

When studying the outcomes of experiments more than one measurement (ran-
dom variable) may be obtained. For example, when studying traffic flow, we
might be interested in the number of cars that go past a point per minute, as
well as the mean speed of the cars counted. We might also be interested in the
spacing between consecutive cars, and the relative speeds of the two cars. For
this reason, we are interested in probability statements concerning two or more
random variables.

6.1 Definition of Joint Distribution

In order to deal with probabilities for events involving more than one random
variable, we need to define their joint distribution. We begin with the case
of two random variables X and Y.

Definition 6.1.1 (Joint cumulative distribution function). Given random vari-
ables X and Y, the joint cumulative distribution function of X and Y is
defined by

F . (z,y)=Pr(X <z, Y <y) forall (z,7) € R%

(X,Y)

When both X and Y are discrete random variables, it is more convenient to
talk about the joint probability mass function of X and Y:

p(X,Y)('ray) = PY(X = .Z‘,Y = y)

We have already talked about the joint distribution of two discrete random
variables in the case in which they are independent. Here is an example in which
X and Y are not independent:

Example 6.1.2. Suppose three chips are randomly selected from a bowl con-
taining 3 red, 4 white, and 5 blue chips.

71
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Let X denote the number of red chips chosen, and Y be the number of white
chips chosen. We would like to compute the joint probability function of X and
Y that is,

Pr(X =2,Y =y),
were z and y range over 0, 1, 2 and 3.
For instance,

5
Pr(X =0,Y =0) = (%,2))_212%‘;27
4 . 5 4
Prx oy =) = Ul g -
3\ (4 (5
Pr(X=1Y=1) = @)&%Q):gg:i’

and so on for all 16 of the joint probabilities. These probabilities are more easily

expressed in tabular form:

X\Y 0 1 2 3 Row Sums
0 122 2/11  3/22 2/110 | 21/55
1 3/22  3/11 9/110 0 27/55
2 3/42  3/55 0 0 27/220
3 1/220 0 0 0 1/220
Column Sums | 14/55 28/55 12/55  1/55 1

Table 6.1: Joint Probability Distribution for X and Y, p , .,

Notice that pmf’s for the individual random variables X and Y can be

obtained as follows:
3

py (i) = ZP(i,j) <+ adding up i'" row
§=0
fori=1,2,3, and
3
py(J) = ZP(i,j) + adding up j*" column
i=0
for j =1,2,3.

These are expressed in Table 6.1 as “row sums” and “column sums,’
tively, on the “margins” of the table. For this reason p, and p, are usually
called marginal distributions.

Observe that, for instance,

’ respec-

1 28
OZPr(X:?’aYZ1)7&px(3)'py(1): %%7

and therefore X and Y are not independent.
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Definition 6.1.3 (Joint Probability Density Function). An integrable function
f:R? = R is said to be a joint pdf of the continuous random variables X and
Y iff

(i) f(z,y) =0 for all (z,y) € R?, and

(i) /: /_O; f(z,y) dedy = 1.

Example 6.1.4. Consider the disk of radius 1 centered at the origin,
Dy ={(z,y) e R? | 2? +¢? < 1}.
The uniform joint distribution for the disc is given by the function
if 22 +4+9% <1,

f(x,y) =

0  otherwise.

This is the joint pdf for two random variables, X and Y, since

/ / f(%y) dxdy = // - dxdy = —- area(Dl) = 1,
—o0 J —00 D, e s

since area(D;) = 7.
This pdf models a situation in which the random variables X and Y denote
the coordinates of a point on the unit disk chosen at random.

If X and Y are continuous random variables with joint pdf f , ., then the

joint cumulative distribution function, Fi, ., is given by

Ty
F(X,Y)(‘T7y) = Pr(X <z,Y < y) = / / f(x,y) (u,v) dvdu,

for all (z,y) € R2.
Given the joint pdf, fixvy» of two random variables defined on the same
sample space, C, we can compute the probability of events of the form

(X,Y)e A)={ceC|(X(c)Y(c) € A},
where A is a Borel subset! of R?, is computed as follows
Pr((X,Y) e A) = // f(Xﬁy)(x,y) dzdy.
A
1Borel sets in R? are generated by bounded open disks; i.e, the sets

() €R? | (2 — 20)? + (y — y0)? < 12},

where (0, %o) € R? and r > 0.
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Example 6.1.5. A point is chosen at random from the open unit disk D;.
Compute the probability that that the sum of its coordinates is bigger than 1.
Solution: Let (X,Y) denote the coordinates of a point drawn at random
from the unit disk D; = {(z,y) € R? | 22 + y? < 1}. Then the joint pdf of X
and Y is the one given in Example 6.1.4; that is,
if 22492 <1,
f(x,y) (.%', y) =

0  otherwise.

We wish to compute Pr(X +Y > 1). This is given by

Pr(X+Y >1)= //A foxn (7,y) dody,

where
A:{(x,y)eRz |x2+y2<1, x+y>1}.

The set A is sketched in Figure 6.1.1.

A
A

AR

Figure 6.1.1: Sketch of region A

PriX+Y>1) = //ldxdy

1
= —area(A)
T

1/ m 1
o \4 2
1 1
- ——=0.09

4 27 ’

Since the area of A is the area of one quarter of that of the disk minus the are
of the triangle with vertices (0,0), (1,0) and (0,1). O
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6.2 Marginal Distributions

We have seen that if X and Y are discrete random variables with joint pmf
then the marginal distributions are given by

Px (@) = Py (@,9),

p(xyy)?

and

by (y) = Zp(x,y) (x’ y)v

where the sums are taken over all possible values of y and x, respectively.
We can define marginal distributions for continuous random variables X and
Y from their joint pdf in an analogous way:

Ix (JZ) = [ f(x,y)(x’y) dy

and

o0
R
—00
Example 6.2.1. Let X and Y have joint pdf given by

1
= if 224y < 1,
™

f(xyy)(xay) =

0  otherwise.
Then, the marginal distribution of X is given by

0 V1—x2

1 2

fx(w)=/ Foes (@,9) dy:—/ dy=2V1-22for —1<z<1
-0 TJVi—a? ™

and
fx(z) =0 for |z| > 1.
Y
1
Al
x
& Yy 1: —/1 — 22
Similarly,
2
=V1—y? iflyl <1
™
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=<

2

=
A

X

Observe that, in the previous example,

f(X,Y) (.%‘,y) # fX(x) ’ fY(y)7
since 1 4
Since — # — V1 —22y/1 -y
T
for (z,y) in the unit disk. We then say that X and Y are not independent.

Example 6.2.2. Let X and Y denote the coordinates of a point selected at
random from the unit disc and set Z = /X2 4 Y2
Compute the cdf for Z, F,(z) for 0 < z < 1 and the expectation of Z.
Solution: The joint pdf of X and Y is given by

if 22 +9% <1,
f(x_y)(x,y) =
0  otherwise.
Pr(Z<z) = Pr(X?+Y?2<2?), for0<z<1,

// fros,(@y) dy da
X24Y2<22

1 27 z
= — / / r drdf
™Jo 0

1 r2
= —2 o
7r( W) 2

0

= 22’

where we changed to polar coordinates. Thus,

F,(2)=2% for0<z<1.

Consequently,

2z if0<z<1,
f2(2) = {0 otherwise.
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Thus, computing the expectation,

BE(Z) = /oo 2, (2) dz

- /0 20 d

1
2
= /QZZdZ:*.
O 3

Observe that we could have obtained the answer in the previous example by

computing
E(D) = EWX?+4Y?)

= //Rz Va2 +y? fy, (@,y) dedy

O

1
= // Vo2 +y? — dazdy,
A s

where A = {(x,y) € R? | 22 +y? < 1}. Thus, using polar coordinates again, we

obtain
1 2 1
7/ / r rdrdf
™ Jo 0
1

1
= 727r/ r2dr
m 0

2

g.
This is is the bivariate version of Theorem 5.2.2; namely, is,

E(D)

Bla(X V)] = [ a(e.0) s (o9) d

for any integrable function g of two variables for which

//Rz l9(2, )| f x.y, (2, y) dedy < oo.

Theorem 6.2.3. Let X and Y denote continuous random variable with joint

pdf fixyy- Then,
E(X+Y)=EX)+E(®Y).

In this theorem,

B = [ g d,

— 00
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and

) - [ Tk (@) dy,

where f, and f, are the marginal distributions of X and Y, respectively.

Proof of Theorem.

E(X 1Y)

// (33 + y)f(x,y) dzdy
RQ
// CUf(ny) dxdy—i—// yf(xﬁy) dxdy
R2 R2
[ [ Tfixv dydx+[ [ Yfixy, dzdy
/ x/ f(ny) dyd:c+/ y/ f(x,y) dzdy

/Z 2fy (@) dx+/o;yfy(y) dy

E(X) + E(Y).

6.3 Independent Random Variables

Two random variables X and Y are said to be independent if for any events A
and B in R (e.g., Borel sets),

Pr((X,Y)e Ax B)=Pr(X € A)-Pr(Y € B),
where A x B denotes the Cartesian product of A and B:
Ax B={(r,y) €R? |z € Aand z € B}.
In terms of cumulative distribution functions, this translates into
Fyy(@y)=F(z) F,(y) forall (z,y) € R?. (6.1)

We have seen that, in the case in which X and Y are discrete, independence of
X and Y is equivalent to

Pix vy (mvy) = DPx (.23) " Py (y) for all (x,y) € R%

For continuous random variables we have the analogous expression in terms of
pdfs:
Foxo @y) = fe(@)- i (y) forall (z,y) € R (6.2)
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This follows by taking second partial derivatives on the expression (6.1) for the

cdfs since 52
F
f(x,y>($73/) = W;Y)(x,y)

for points (z,y) at which f, ., is continuous, by the Fundamental Theorem of
Calculus.

Hence, knowing that X and Y are independent and knowing the correspond-
ing marginal pdfs, in the case in which X and Y are continuous, allows us to
compute their joint pdf by using Equation (6.2).

Proposition 6.3.1. Let X and Y be independent random variables. Then
E(XY)=EX)-E({Y). (6.3)

Proof: We prove (6.3) for the special case in which X and Y are both continuous
random variables.
If X and Y are independent, it follows that their joint pdf is given by

f(x,y)(x7y) = fx(‘r) : fy(y)v for (x’y) €eR%

we then have that

EXY) = //]RQ Y fix v (@, y) dody

/ /Rg wyfy(x) - fy (y) dedy

/ /R efy (@) yfy (y) dedy

| utw) [ et dsay

-/ Tt WE(X) dy,

where we have used the definition of E(X). We then have that

B(YY) = B [ Tk ) dy = B(X) - B(Y).

O

Example 6.3.2. A line segment of unit length is divided into three pieces by
selecting two points at random and independently and then cutting the segment
at the two selected pints. Compute the probability that the three pieces will
form a triangle.
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Solution: Let X and Y denote the the coordinates of the selected points.
We may assume that X and Y are uniformly distributed over (0,1) and inde-
pendent. We then have that

1 if0<z<l, 1 if0<y<],
= d =
Fx () { 0 otherwise, and -/ (y) { 0 otherwise.

Consequently, the joint distribution of X and Y is

1 if0<z<1,0<y<1,
0 otherwise.

f(x,y) = fx(m) ) fY(y) = {

If X <Y, the three pieces of length X, Y — X and 1 —Y will form a triangle

if and only if the following three conditions derived from the triangle inequality
hold (see Figure 6.3.2):

Figure 6.3.2: Random Triangle

X<Y-X+1-YV=X<1/2
V- X<X+1-YV=Y<X+1/2

and
1-Y<X4+Y-X=Y >1/2

Similarly, if X > Y, a triangle is formed if
Y <1/2,

Y >X-1/2,

and
X >1/2.

Thus, the event that a triangle is formed is the disjoint union of the events
A =(X <Y, X <1/2,Y < X+1/2)Y > 1/2)

and
Ay=(X>Y,Y<1/2,Y > X —1/2,X >1/2).
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Ay

A

0.5 1 T

Figure 6.3.3: Sketch of events A; and As

These are pictured in Figure 6.3.3:
We then have that

Pr(triangle) = Pr(A; U As)
= // fixon (@, y) dzdy
A1UA5

= // dzdy
AjUAS

= area(4;) + area(4s)

1

Thus, there is a 25% chance that the three pieces will form a triangle. O

Example 6.3.3 (Buffon’s Needle Experiment). An experiment consists of drop-
ping a needle of length L onto a table that has a grid of parallel lines D units
of length apart from one another (see Figure 6.3.4). Compute the probability
that the needle will cross one of the lines.

Solution: Let X denote the distance from the mid—point of the needle to
the closest line (see Figure 6.3.4). We assume that X is uniformly distributed
on (0, D/2); thus, the pdf of X is:

2
—, if0<z<D/2

0, otherwise.
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X0

Figure 6.3.4: Buffon’s Needle Experiment

Let © denote the acute angle that the needle makes with a line perpendicular
to the parallel lines. We assume that © and X are independent and that © is
uniformly distributed over (0,7/2). Then, the pdf of © is given by

g7 if0<0<m/2
T
f@(a) =

0, otherwise,

and the joint pdf of X and © is

5 fo<z<1/2, 0<6<m7/2
f(x‘(—)) (.’[7,9) =

0, otherwise.

When the needle meets a line, as shown in Figure 6.3.4, it forms a right triangle
whose legs are the closest line to the middle of the needle and the line segment
of length X connecting the middle to the closest line as shown in the Figure.

X
Then, pvi is the length of the hypothenuse of that triangle. We therefore

cos
have that the event that the needle will meet a line is equivalent to the event

X
cos ©

L
< bR
or

A= {(:E,H) €(0,2) x (0,7/2) | X < scose}.
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We then have that the probability that the needle meets a line is

Pr(A) = //Afm@)(ac,@) dzdd

7/2 pLcos(0)/2 4
= / / — dzdf
0 0 D

/2
= & cos @ db
D J,

Thus, in the case in which D = L, there is a 2/, or about 64%, chance that
the needle will meet a line. O

Example 6.3.4 (Infinite two—dimensional target). Place the center of a target
for a darts game at the origin of the zy—plane. If a dart lands at a point with
coordinates (X,Y), then the random variables X and Y measure the horizontal
and vertical miss distance, respectively. For instance, if X < 0and Y > 0, then

Figure 6.3.5: zy-target

the dart landed to the left of the center at a distance |X| from a vertical line
going through the origin, and at a distance Y above the horizontal line going
through the origin (see Figure 6.3.5).

We assume that X and Y are independent, and we are interested in finding
the marginal pdfs f, and f, of X and Y, respectively.
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Assume further that the joint pdf of X and Y is given by the function
f(z,y), and that it depends only on the distance from (X,Y’) to the origin.
More precisely, we suppose that

fla,y) =g(a®+y?*) forall (z,y) € R?,
where g is a differentiable function of a single variable. This implies that
g(t) >0 forallt >0,
and
/O T a= L (6.4)

This follows from the fact that f is a pdf and therefore

/ f(z,y) dedy = 1.
R2

Thus, switching to polar coordinates,

2 [e%e]
1= / / g(r?)r ddo.
0 0

Hence, after making the change of variables ¢ = r2, we get that

1= 277/ g(r?) rdr = 7r/ g(t) dt,
0 0

from which (6.4) follows.
Now, since we are assuming that X and Y are independent, it follows that

f@,y) = fi(2)- f (y) forall (z,y) € R,

Thus
fx(@) - fy(y) = g(2* +v°).

Differentiating with respect to =, we get
Fo@)- £ (y) =g'(a® +9%) - 22.

Dividing this equation by x - f, (z) - f, (y) = x - g(2? + y?), we get

1 @) 2¢'(2* +97)

z o fole) g +y?)

with (z,y) # (0,0).

Observe that the left—hand side of the equation is a function of x, while the
right hand side is a function of both z and y. It follows that the left-hand-side
must be constant. The reason for this is that, by symmetry,

g@+y® 1)
9@=*+y?)  yf(y)

for all (z,y) € R?
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So that,
1@ 1)
z fy(z) y fy (y)
for all (z,y) € R?, (z,y) # (0,0. Thus, in particular
1fL@) _ fL)
z fyle)  fr (1)
and some constant a. It then follows that
fi (@)
fx (@)
for all x € R. We therefore get that

=aq, forallzéeR,

= ar

d

- [I(f(2))] = az.

Integrating with respect to x, we then have that
2
In (fy(z)) = az + c1,

for some constant of integration c;. Thus, exponentiating on both sides of the
equation we get that

fo(z)=cet” forallz € R.

Thus f, (z) must be a multiple of ¢5*”. Now, for this to be a pdf, we must have
that

/ fi (@) dz = 1.
Then, necessarily, it must be the case that a < 0 (Why?). Say, a = —42, then

I2

>
N‘N

fx () = ce”

To determine what the constant ¢ should be, we use the condition

/fo(x) dz = 1.

o0 2,2
I:/ e~ /2 qg.
—0o0

= / 6762?/2/2 dy'

Let

Observe that
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We then have that

12

/ 76” dx - / eiéQé dy
/ / =22 (@ +y%) dzdy.

Switching to polar coordinates we get

) /27r o) 7£T2
17 = e 2" rdrdd
0 0
27 [
= e " du
&y
2w
= 6727

52
where we have also made the change of variables u = ?7’2. Thus, taking the

square root,

V7

I:(S

/_i fyx(x)dz =1

V2T
5

Hence, the condition

implies that

from which we get that

0
c=——
Vo
Thus, the pdf for X is
5 5252
fi(@) = e” 2  forallz eR.

Similarly, or by using symmetry, we obtain that the pdf for Y is

) 6242
fy(y) = \/ﬂe_T for all y € R.

That is, X and Y have the same distribution.
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We next set out to compute the expected value and variance of X. In order
to do this, we first compute the moment generating function, ¢, (¢), of X:

Py (t) E(e)

5222

) <
= — eez dz
\/27r/,oo
0 /oo _ 82
= — e
V2T J oo

.7:2
>—ttx dl’
- \/6 /Oo T qo
21 J o

Complete the square on z to get

o 20, 2 22 t\*
TIRtTr Tt ta T a T \"Te) T

then,

é o 2 ,
P (t) = \/72?/ o= T (@—52) 17 /287 4,

_ e 0 /°° — 2 (- %)
= e — e 52/ dx
V2T ) oo
Make the change of variables
t
uU=x — ﬁ
then du = dz and
2 ) oo 2
P (t) = e2? e du

since, as we have previously seen in this example,

1) —52 2

flu)=—e=2 ", forucekR,

is a pdf and therefore

R —82 2
e2 " du=1.
/;oo ous
Hence, the mgf of X is
t2
P (t) =e22 forallt € R.

Differentiating with respect to ¢ we obtain

Y ) = geim
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and

for all t € R.

[TTTT TeRT TTTIT 711171
-4 -2 0 2 4

X

Figure 6.3.6: pdf for X ~ Normal(0,25/87)

Hence, the mean value of X is
E(X) = ¢/, (0) =0

and the second moment of X is

1
E(X?) =¢"(0) = =
Thus, the variance of X is
1
Var(X) = 672
Next, set 02 = Var(X). We then have that
1
o= =
57
and we therefore can write the pdf of X as
1 12
fy(2) e 22  —o00< <00,

- V2mo
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A continuous random variable X having the pdf

1 =2
e 2027, for —oo <z < o0,

€T =
foo) = <=
is said to have a normal distribution with mean 0 and variance o2. We write
X ~ Normal(0,0?). Similarly, ¥ ~ Normal(0,02). A graph of the pdf for
X ~ Normal(0,0?), for o = 5/+/8, is shown in Figure 6.3.6
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Chapter 7

Some Special Distributions

In this notes and in the exercises we have encountered several special kinds
of random variables and their respective distribution functions in the context
of various examples and applications. For example, we have seen the uniform
distribution over some interval (a,b) in the context of modeling the selection
of a point in (a,b) at random, and the exponential distribution comes up when
modeling the service time at a checkout counter. We have discussed Bernoulli
trials and have seen that the sum of independent Bernoulli trials gives rise to
the Binomial distribution. In the exercises we have seen the discrete uniform
distribution, the geometric distribution and the hypergeometric distribution.
More recently, in the last example of the previous section, we have seen that
the miss horizontal distance from the y—axis of dart that lands in an infinite
target follows a Normal(0, 0?) distribution (assuming that the miss horizontal
and vertical distances are independent and that their joint pdf is radially sym-
metric). In the next section we discuss the normal distribution in more detail.
In subsequent sections we discuss other distributions which come up frequently
in application, such as the Poisson distribution.

7.1 The Normal Distribution

In Example 6.3.4 we saw that if X denotes the horizontal miss distance from
the y—axis of a dart that lands on an infinite two—dimensional target, the X has
a pdf given by

1 a2
e 202, for —oo <z < o0,

fx(m) =

for some constant ¢ > 0. In the derivation in Example 6.3.4 we assumed that
the X is independent from the Y coordinate (or vertical miss distance) of the
point where the dart lands, and that the joint distribution of X and Y depends
only on the distance from that point to the origin. We say that X has a normal
distribution with mean 0 and variance o2. More generally,we have the following
definition:

2ro

91
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Definition 7.1.1 (Normal Distribution). A continuous random variable, X,

with pdf
1 _(@-w?
e 22 | for —oo <z < o0,

fx(x) =

2mo
and parameters p and o2, where y € R and o > 0, is said to have a normal

distribution with parameters p and o2. We write X ~ Normal(u, 0?)

The special random variable Z ~ Normal(0,1) has a distribution function
known as the standard normal distribution:

L 2
z) = e for —o0 <z < o0. 7.1
F2) = = (7.)
From the calculations in Example 6.3.4 we get that the moment generating

function for Z is
2
Y, (t) =e/? for —oo <t < . (7.2)

Example 7.1.2. Let € R and o > 0 be given, and define
X =0Z+p.

Show that X ~ Normal(u,0?) and compute the moment generating function of
X, its expectation and its variance.

Solution: First we find the pdf of X and show that it is the same as that
given in Definition 7.1.1. In order to do this, we first compute the cdf of X:

F (z) = Pr(X<uax)

Pr(cZ 4+ p < x)
Pr{Z < (¢ — p)/o]
= F,((z—p)/o).

Differentiating with respect to x, while remembering to use the Chain Rule, we
get that

fx(@) = F((x—p)/o) (1/0)

- ()
g g

1 1 2
— . _- plle=w)/a]7/2
r) = . e
1 _(=z—pw?
= e 202 R
2mo

for —0o < & < oo, which is the pdf for a Normal(y, 0?) random variable accord-
ing to Definition 7.1.1.
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Next, we compute the mgf of X:
Uy(t) = Ee

E(et(azw))

E( taZ-i—tu)

tX)

e
E(eatZeut)
eutE(e(at)Z)
= eﬂth (Ut)v

for —oo < t < co. It then follows from (7.2) that

2
v (t) = ehto(ot)”/2
_ eutea2t2/2
_ t+o2t? /2
= et +o / ,

for —oo < t < o0.
Differentiating with respect to ¢, we obtain

W (1) = (u+ 0Pttt

and
1/’;2 (t) _ 0_26/Lt+(72t2/2 + (M + 0_2t)2€,ut+02t2/2

for —oo < t < o0.
Consequently, the expected value of X is

Thus, the variance of X is
Var(X) = B(X?) — u? = o>

We have therefore shown that if X ~ Normal(u,o?), then the parameter p is
the mean of X and o2 is the variance of X. O

Example 7.1.3. Suppose that many observations from a Normal(u,o?) distri-
bution are made. Estimate the proportion of observations that must lie within
one standard deviation from the mean.

Solution: We are interested in estimating Pr(|X — u| < o), where X ~
Normal(u, 0?).

Compute

Pr(| X —pl <o) = Pr(-o<X—p<o)

Pr(—1<X_'u<1>,
g
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where, according to Problem (1) in Assignment #16,

X—p
g

~ Normal(0, 1);

that is, it has a standard normal distribution. Thus, setting

_X-p

)

Z

g

we get that
Pr(|X —pl<o)=Pr(-1< Z < 1),

where Z ~ Normal(0, 1). Observe that
Pr(|X —pl <o) = Pr(-1<Z<1)

= Pr(-1<Z<1)
= Fz(l) _FZ(_l)a

where F, is the cdf of Z. MS Excel has a built in function called normdist which
returns the cumulative distribution function value at x, from a Normal(u, o?)

random variable, X, given x, the mean pu, the standard deviation ¢ and a
“TRUE” tag as follows:

F,(z) = normdist(z, u,0, TRUE) = normdist(z,0, 1, TRUE).
We therefore obtain the approximation
Pr(|X — p] < o) = 0.8413 — 0.1587 = 0.6826, or about 68%.

Thus, around 68% of observations from a normal distribution should lie within
one standard deviation from the mean. g

Example 7.1.4 (The Chi-Square Distribution with one degree of freedom).
Let Z ~ Normal(0, 1) and define Y = Z2. Give the pdf of Y.
Solution: The pdf of Z is given by

1 2
- —2/2  for —
z) = e , for —oo <z < o0
Fu6) = o=
We compute the pdf for Y by first determining its cdf:
P(Y<y) = P(Z*<y) fory>0
— P(-T<Z< V)
= P(—vy<Z<.,/y), since Z is continuous

Thus,
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since Y is continuous.
We then have that the cdf of YV is

Fy(y) :FZ(\/Q)_FZ(_\/g) fOI'y>O,

from which we get, after differentiation with respect to v,

L) = FWD gt V) 5
1 1
= fz(\/@)erfz(*\/@ﬁ
- b Le—y/2 . eY/2
- m{m Y }
= L.Le*yﬂ
V2 Y
for y > 0. O

Definition 7.1.5. A continuous random variable Y having the pdf

1 1
—— . — Y2 ify >0
V2T Y
fY (y) =
0 otherwise,
is said to have a Chi-Square distribution with one degree of freedom. We write
2
Y ~ X7
Remark 7.1.6. Observe that if Y ~ Xf, then its expected value is
E(Y)=E(Z* =1.

To compute the second moment of Y, E(Y?) = E(Z*), we need to compute the
fourth moment of Z. Recall that the mgf of Z is

b, (t)=e"/* forallteR.
Its fourth derivative can be computed to be
1/J;4) (t) = (3 + 6t% +t4) et’/2 for all t € R.

Thus,
E(Z*) =¢W(0) = 3.

We then have that the variance of Y is

Var(Y)=E(Y?) - 1=FE(Z*) -1=3-1=2.
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7.2 The Poisson Distribution

Example 7.2.1 (Bacterial Mutations). Consider a colony of bacteria in a cul-
ture consisting of N bacteria. This number, N, is typically very large (in the
order of 10 bacteria). We consider the question of how many of those bacteria
will develop a specific mutation in their genetic material during one division
cycle (e.g., a mutation that leads to resistance to certain antibiotic or virus).
We assume that each bacterium has a very small, but positive, probability, a, of
developing that mutation when it divides. This probability is usually referred
to as the mutation rate for the particular mutation and organism. If we let
X denote the number of bacteria, out of the N in the colony, that develop the
mutation in a division cycle, we can model X by a binomial random variable
with parameters a and N; that is,

Xn ~ Binomial(N, a).

This assertion is justified by assuming that the event that a given bacterium
develops a mutation is independent of any other bacterium in the colony devel-
oping a mutation. We then have that

N
Pr(Xy =k) = (k)ak(l —a)N7* for k=0,1,2,...,N. (7.3)
Also,

E(Xy) = aN.

Thus, the average number of mutations in a division cycle is alN. We will denote
this number by A and will assume that it remains constant; that is,

aN = X (a constant.)

Since N is very large, it is reasonable to make the approximation

N—o00

N
Pr(Xy = k)~ lim (k)am—a)N—’f, for k=0,1,2,3,...

provided that the limit on the right side of the expression exists. In this example
we show that the limit in the expression above exists if alNV = X is kept constant
as N tends to infinity. To see why this is the case, we first substitute A/N for
a in the expression for Pr(Xy = k) in equation (7.3). We then get that

mre-= () () (-3)"

which can be re-written as

Pr(XN:k):)]::-(]\[]V_!W-];k~<l—;\\7>1v-<l—;\]>k. (7.4)
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Observe that
A\ N
hm (]. — N) = 6_)\, (75)

N—o0

x n
since lim (1 + —) = ¢ for all real numbers x. Also note that, since k is
n

n— 00
fixed,
A\

A}gréo (1 - N> =1. (7.6)

It remains to see then what happens to the term L i in equation
w pp DG q
(7.4), as N — co. To answer this question, we compute
N! 1 N(N-1)(N-2)---(N—-(k—1))

(N — k) N¥ NF

Thus, since

lim (1—]<[> =1 forallj=1,2,3,... k-1,

N—o00

it follows that e .
NN R NE (1)
Hence, in view of equations (7.5), (7.6) and (7.7), we see from equation (7.4)
that
. A
ngnooPr(XN =k)= 7€

for k=0,1,2,3,.... (7.8)
The limiting distribution obtained in equation (7.8) is known as the Poisson
distribution with parameter A\. We have therefore shown that the number of
mutations occurring in a bacterial colony of size N, per division cycle, can be
approximated by a Poisson random variable with parameter A = aN, where a

is the mutation rate.

Definition 7.2.2 (Poisson distribution). A discrete random variable, X, with

pmf
k

Px (k) = ﬁ 6_>\

for k=0,1,2,3,...; zero elsewhere,
where A > 0, is said to have a Poisson distribution with parameter \. We write
X ~ Poisson(A).

To see that the expression for p, (k) in Definition 7.2.2 indeed defines a pmf,
observe that

Kl
k=0

= 6)\’
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from which we get that

oo

S k)=
k=0

k=0

‘ >

k
' e A=t e r=1.

™

In a similar way we can compute the mgf of X ~ Poisson(\) to obtain (see
Problem 1 in Assignment #19):

¥ (t) =D forall t € R.

Using this mgf we can derive that the expected value of X ~ Poisson()) is

and its variance is

as well.

Example 7.2.3 (Sum of Independent Poisson Random Variables). Suppose

that X ~ Poisson(A;) and Y ~ Poisson()z2) are independent random variables,

where A1 and A\ are positive. Define Z = X 4+ Y. Give the distribution of Z.
Solution: Use the independence of X and Y to compute the mgf of Z:

’(/)Z (t) = wx+y (t)
= wx (t) ! d’y (t)

— e)\l(et—l) . e)\g(et—l)
e(>\1+>\2)(6t*1)’

which is the mgf of a Poisson(A; + A2) distribution. It then follows that
Z ~ Poisson(A; + A2)

and therefore

(A1 4 Ap)* oM

i for k=0,1,2,3,...; zero elsewhere.

py(k) =
0

Example 7.2.4 (Estimating Mutation Rates in Bacterial Populations). Luria
and Delbriick! devised the following procedure (known as the fluctuation test)
to estimate the mutation rate, a, for certain bacteria:

Imagine that you start with a single normal bacterium (with no mutations) and
allow it to grow to produce several bacteria. Place each of these bacteria in
test—tubes each with media conducive to growth. Suppose the bacteria in the
test—tubes are allowed to reproduce for n division cycles. After the n'" division

1(1943) Mutations of bacteria from virus sensitivity to virus resistance. Genetics, 28,
491-511
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cycle, the content of each test—tube is placed onto a agar plate containing a
virus population which is lethal to the bacteria which have not developed resis-
tance. Those bacteria which have mutated into resistant strains will continue to
replicate, while those that are sensitive to the virus will die. After certain time,
the resistant bacteria will develop visible colonies on the plates. The number of
these colonies will then correspond to the number of resistant cells in each test
tube at the time they were exposed to the virus. This number corresponds to
the number of bacteria in the colony that developed a mutation which led to
resistance. We denote this number by Xy, as we did in Example 7.2.1, where N
is the size of the colony after the n'" division cycle. Assuming that the bacteria
may develop mutation to resistance after exposure to the virus, the argument
in Example 7.2.1 shows that, if IV is very large, the distribution of Xy can
be approximated by a Poisson distribution with parameter A = aN, where a
is the mutation rate and N is the size of the colony. It then follows that the
probability of no mutations occurring in one division cycle is

Pr(Xy =0) = e (7.9)

This probability can also be estimated experimentally as Luria and nd Delbriick
showed in their 1943 paper. In one of the experiments described in that paper,
out of 87 cultures of 2.4x 108 bacteria, 29 showed not resistant bacteria (i.e., none
of the bacteria in the culture mutated to resistance and therefore all perished
after exposure to the virus). We therefore have that

29
Pr(Xy =0) = 57

Comparing this to the expression in Equation (7.9), we obtain that

e §,
87

which can be solved for A\ to obtain

29
Arx—In|—
2 (5)

A~ 1.12.

or

The mutation rate, a, can then be estimated from A = alV:

A 1.12
a= =

~ ~ -9
N ¥ gaxqes S ATXI0T
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Chapter 8

Convergence in Distribution

We have seen in Example 7.2.1 that if X,, ~ Binomial(\/n, n), for some constant
A>0and n=1,2,3,..., and if Y ~ Poisson(\), then

lim Pr(X, =k)=Pr(Y =%k) forallk=0,1,2,3,...

n—oo
We then say that the sequence of Binomial random variables (X7, Xo, X3,...)
converges in distribution to the Poisson random variable Y with parameter
A. This concept will be made more general and precise in the following section.

8.1 Definition of Convergence in Distribution

Definition 8.1.1 (Convergence in Distribution). Let (X,) be a sequence of
random variables with cumulative distribution functions Fy , forn =1,2,3,..,
and Y be a random variable with cdf F,,. We say that the sequence (X,,)
converges to Y in distribution, if

lim F, (z)=F,(x)

n— oo "
for all x where F,, is continuous.

We write H
X, =Y asn— oo.

Thus, if (X,,) converges to Y in distribution then

lim Pr(X, <z)=Pr(Y <z) forz at which F, is continuous.

n—oo

If Y is discrete, for instance taking on nonzero values at k = 0,1,2,3,... (as
is the case with the Poisson distribution), then F, is continuous in between
consecutive integers k and k+ 1. We therefore get that for any ¢ with 0 < e < 1,

lim Pr(X, <k+¢e)=Pr(Y <k+¢)

n—oo

101
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for all k =0,1,2,3,.... Similarly,
lim Pr(X, <k—¢)=Pr(Y <k—¢)

n—oo

for all k =0,1,2,3,.... We therefore get that
lim Pr(k—e< X, <k+e)=Pr(k—e<Y <k+¢)

n—oo

for all k =0,1,2,3,.... From this we get that
lim Pr(X, =k)=Pr(Y =k)
n—oo

for all k =0,1,2,3,..., in the discrete case.

If (X)) converges to Y in distribution and the moment generating functions
Py, (t) forn=1,2,3..., and v, (t) all exist on some common interval of values
of ¢, then it might be the case, under certain technical conditions which may be
found in a paper by Kozakiewicz,' that

lim wxn (t) = 'l/}y (t)
n—oo
for all ¢ in the common interval of existence.

Example 8.1.2. Let X,, ~ Binomial(A/n,n) for n =1,2,3,....
et A\ "
Yy (t) = (e +1-— ) for all n and all ¢.
n n

Then,
et —1)\" .
lim ¥, (¢t)= lim <1 + (e)> — A 71)’
" n

n—oo n—oo
which is the moment generating function of a Poisson()\) distribution. This is
not surprising since we already know that X,, converges to ¥ ~ Poisson(A) in
distribution. What is surprising is the theorem discussed in the next section
known as the mgf Convergence Theorem.

8.2 mgf Convergence Theorem

Theorem 8.2.1 (mgf Convergence Theorem, Theorem 5.7.4 on page 289 in
the text). Let (X,) be a sequence of random variables with moment generat-
ing functions ¢ (t) for |t| < h, n =1,2,3,..., and some positive number h.
Suppose Y has mgf 1, (t) which exists for |t| < h. Then, if

T o (1) =0, (1), for | <h,

it follows that
lim F, (z)=F,(z)

n—00

for all x where Fy is continuous.

1(1947) On the Convergence of Sequences of Moment Generating Functions. Annals of
Mathematical Statistics, Volume 28, Number 1, pp. 61-69
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Notation. If (X,,) converges to Y in distribution as n tends to infinity, we
write

D
X, —Y as n— oo.

The mgf Convergence Theorem then says that if the moment generating
functions of a sequence of random variables, (X,,), converges to the mgf of
a ranfom variable Y on some interval around 0, the X, converges to Y in
distribution as n — oo.

The mgf Theorem is usually ascribed to Lévy and Cramér (c.f. the paper
by Curtiss?)

Example 8.2.2. Let X, Xo, X3,... denote independent, Poisson(\) random
variables. For each n =1,2,3, ..., define the random variable

X+ Xo+ -+ X,
~ .

X

X, is called the sample mean of the random sample of size n, { X1, Xa,..., X, }.

The expected value of the sample mean, X, is obtained from

E(X,) = E (;(Xl +Xo+ -+ Xn)>

n

= Y B

2(1942) A note on the Theory of Moment Generating Functions. Annals of Mathematical
Statistics, Volume 13, Number 4, pp. 430-433
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Since the X;’s are independent, the variance of X,, can be computed as follows

— 1
Var(Xn) = Var <n(X1 + X2 +--+ Xn))

We can also compute the mgf of X,, as follows:

b () = B(eXr)

= wxl+x2+-~-+xn (t>
n
o (D)o ()0 (1),
n n n

since the X;’s are linearly independent. Thus, given the X;’s are identically

distributed Poisson()),
t n
o (2

|:e)\(et/"—1):|

e (1)

t/n_
e)\n(e 1),

for all t € R.
Next we define the random variables

Xn = B(Xn) = Xn_)\, forn=1,2,3,...

Z =
Var(X,) A/n

We would like to see if the sequence of random variables (Z,) converges in
distribution to a limiting random variable. To answer this question, we apply
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the mgf Convergence Theorem (Theorem 8.2.1). Thus, we compute the mgf of
Zpforn=1,23,...

¥, (1) = E()
_ E(;}fxn—tm)

tVr %
—tV/ Xn
= et g <e VA )

Next, use the fact that
b (t) = D
Xn ’

for all £ € R, to get that

Y, (1) = e VAR An( T

e—t\/)\n e)\n(et/y A1)

Now, using the fact that

- nL gk 2 23 gt
e ZZﬁ:1+x+?+§+E+---,
k=0
we obtain that
2 3 4
yvax _ gyt Lt 1t 1t
€ + v\ + 2 n\ + 3! naVn + 4! (TL)\)2 +
so that
t 12 1 1t
R B AR
and 5 .
1 ¢ 1 ¢
An(et/V — 1) = Vidt 4+ o824 — — = —
n(e ) " +2 +3'n/\+4!n)\+
Consequently,
A/ ViR 22k Btk e
and
3 14

e—\/n)\tekn(et/'”k—l) _ et2/2 . 6% 4L g
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Observe that the exponent in the last exponential tends to 0 as n — co. We
therefore get that

lim |le™V n)\te/\n(et/ v ")‘—1)
n—00

We have thus shown that

lim ¢, (t)=e" /2, forallteR,

n—oo

where the right-hand side is the mgf of Z ~ Normal(0,1). Hence, by the mgf
Convergence Theorem, Z,, converges in distribution to a Normal(0, 1) random
variable.

Example 8.2.3 (Estimating Proportions). Suppose we sample from a given
voting population by surveying a random group of n people from that popu-
lation and asking them whether or not they support certain candidate. In the
population (which could consists of hundreds of thousands of voters) there is a
proportion, p, of people who support the candidate, and which is not known with
certainty. If we denote the responses of the surveyed n people by X1, Xo, ..., X,
then we can model these responses as independent Bernoulli(p) random vari-
ables: a responses of “yes” corresponds to X; = 1, while X; = 0 is a “no.” The
sample mean,

— Xi+Xo+---+ X,
X, — 1+ Xo + + 7
n

give the proportion of individuals from the sample who support the candidate.
Since E(X;) = p for each i, the expected value of the sample mean is

Thus, X,, can be used as an estimate for the true proportion, p, of people who
support the candidate. How good can this estimate be? In this example we try
to answer this question.

By independence of the X;’s, we get that

p(l—p)

— 1
Var(X,) = —Var(X;) =
n
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Also, the mgf of X, is given by

b () = B(e™n)

s o (1)
= v () () o (3)
0]

= (pet/”qtlfp) .

As in the previous example, we define the random variables

Zn

or

n

¥, (1)

Xn—E(Xn)

\/Var(yn) V(L =p)/n’

Vp(1 —p) A

Thus, the mgf of Z,, is

forn=1,2,3,...,

vno o= np

- , form=1,23,....
L—p

e V15 (p etVR//p=p)/n | g _ p)"
e W15 (p e(t/V/np(1=p) 4 | _p)n
[e—tp\/npulp) (p e(t//mp(1=p)) 4 1 _pﬂ

(p =P/ V/rp(1=p) 4 (1 _ p)etp/\/npufp)))” ,

107
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To compute the limit of v, (t) as n — oo, we first compute the limit of
In (¢, (t)) as n — oo, where

(¢, (1)) = nln (p HA=P)/N/m=p) 4 (1 — p)e—tp/\/np(l—m))

= nln (p e“/\/ﬁ—k(l—p) eib/\/ﬁ>,

where we have set

a= M and b= pit
V(1 —p) V(1 —p)
Observe that
pa—(1—p)b=0, (8.1)
and
pa’+(1—pb?=(1-pt*+pt? =1t (8.2)
Writing
In (p eV 4 (1 —p) e_b/‘/ﬁ>
In (’(/Jzn (t)) = i ,
n

we see that L’Hospital’s Rule can be applied to compute the limit of In (d)zn (t))
as n — 0o. We therefore get that
_% ﬁp ed/vVn g ﬁ(l —p) e—b/Vn
a/vn - —b/vn
lim In (v, () = lim pert(ope

n—oo n— oo 1

n2

_ gy BV etV — 8 (= p) e VT
n—o0 pea/\/ﬁﬁ»(lfp) e—b/vn

1 NG (ap eV —p(1 — p) e*b/‘/ﬁ)
= — lim

2 n—oo pea/\/ﬁ—i—(l—p) e—b/Vn

Observe that the denominator in the last expression tends to 1 as n — oo.
Thus, if we can prove that the limit of the numerator exists, then the limit of
In (¢, (t)) will be 1/2 of that limit:

lim In (¢, (t) = %nl_{r;o [\/ﬁ (ap eV (1 — p) e_b/\/ﬁ)} . (8.3)

n—roo

The limit of the right-hand side of Equation (8.3) can be computed by
L’Hospital’s rule by writing

ap ea/Vn _ b(1 —p) e~ b/Vn

i (o €V 41— ) ) =

)

S
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and observing that the numerator goes to 0 as n tends to infinity by virtue of
Equation (8.1). Thus, we may apply L’Hospital’s Rule to obtain

__a? a/m _ _b2 _ —b/\/m
a=pe wm(l—p)e
lim v/n (ap eV _ b(1 — p) e_b/ﬁ> —  lim 2R 2 1f
= lim (an eV 4 b2 (1 — p) eib/\/ﬁ)
n— o0

= a’p+b°(1-p)
= ¢2
by Equation (8.2). It then follows from Equation (8.3) that
. £
nhﬂrr;o In (v, (t) = 5

Consequently, by continuity of the exponential function,

lim ¢, (t) = lim e"(¥z, () = (t*/2

n—oo n—oo

)

which is the mgf of a Normal(0,1) random variable. Thus, by the mgf Con-
vergence Theorem, it follows that Z,, converges in distribution to a standard
normal random variable. Hence, for any z € R,

X, —
lim Pr (p z) =Pr(Z < 2),

R Y ey

where Z ~ Normal(0, 1). Similarly, with —z instead of z,

lim Pr

CXemp N _piige
n—o00 <,/p(1—p)/n S ) P (Z< )

It then follows that

Ynfp
lim Pr| —2< ————= <z | =Pr(—2<Z<%).
n—+0a ( Vp(1 —p)/n )

In a later example, we shall see how this information can be used provide a good
interval estimate for the true proposition p.

The last two examples show that if X, Xo, X3, ... are independent random
variables which are distributed either Poisson(\) or Bernoulli(p), then the ran-

dom variables L o
X, — E(X,)

\/ Var(X,,) ’
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where X,, denotes the sample mean of the random sample {Xi, Xa,..., X, },
for n = 1,2,3,..., converge in distribution to a Normal(0, 1) random variable;
that is,

X, — E(X,)

D
— — Z asn — oo,
Var(X,,)

where Z ~ Normal(0,1). It is not a coincidence that in both cases we obtain
a standard normal random variable as the limiting distribution. The examples
in this section are instances of general result known as the Central Limit
Theorem to be discussed in the next section.

8.3 Central Limit Theorem

Theorem 8.3.1 (Central Limit Theorem). Suppose X, Xo, X3... are inde-
pendent, identically distributed random wvariables with E(X;) = u and finite
variance Var(X;) = o2, for alli. Then

Yn_,uf
a/vn

Lz~ Normal(0, 1)

Yn_,u

a/v/n

Thus, for large values of n, the distribution function for can be ap-

prozimated by the standard normal distribution.

Proof. We shall prove the theorem for the special case in which the mgf of X;
exists is some interval around 0. This will allow us to use the mgf Convergence
Theorem (Theorem 8.2.1).

We shall first prove the theorem for the case p = 0. We then have that

W (0) =0
and
vy, (0) = o,
Let L
X, — —
aniL M:@XYL forn:172,3,...,
a//n o
since it = 0. Then, the mgf of Z,, is

v )=, (%),

g

where the mgf of X, is
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for all n =1,2,3,... Consequently,

Y, (1) = [wxl (C}_\t/ﬁ)]n, forn=1,2,3,...

To determine if the limit of ¢, (t) as n — oo exists, we first consider In(¢, (t)):
t
(¢, (t)=nlnp,, o)
Set a = t/o and introduce the new variable u = 1/4/n. We then have that
1
In (4, (1)) = 3 Ity (an).

1
Thus, since u — 0 as n — 0o, we have that, if lin%—an@/JXl (au) exists, it
u—0 U

will be the limit of In (4, (t)) as n — oco. Since ¥, (0) = 1, we can apply
L’Hospital’s Rule to get

w’Xl (au)
. In(y, (au)) . Y Taw
hmi2 = lim ——~
u—0 u u—0 2u

(8.4)

_ oy 1 1#;(1 (au)
= 2.5 Yy, (au) T '

Now, since 1/);(1 (0) = 0, we can apply L’Hospital’s Rule to compute the limit

() ) :
T T T T =

It then follows from Equation 8.4 that

lim 711’1(’(/}}{1 (GU)> = g . CLO'Z = i
u—0 u? 2 2’
since a = t/o. Consequently,
t2
im0, ) = &

which implies that
lim v, (t) = et2/2,

n—00

the mgf of a Normal(0, 1) random variable. It then follows from the mgf Con-
vergence Theorem that

Zn 25 Z ~ Normal(0,1) as n — .



112 CHAPTER 8. CONVERGENCE IN DISTRIBUTION

Next, suppose that g # 0 and define Y, = X — p for each k = 1,2,3... Then
E(Y}) = 0 for all k and Var(Y;) = E((X), — p)?) = 0. Thus, by the preceding,

ZZ:1 Yi/n
o/vn

Lz~ Normal(0, 1),

. S (X — 1)/
o

X, —
o/\/n

which we wanted to prove. O

Lz~ Normal(0, 1),

or

Lz~ Normal(0, 1),

Example 8.3.2 (Trick coin example, revisited). Recall the first example we
did in this course. The one about determining whether we had a trick coin or
not. Suppose we toss a coin 500 times and we get 225 heads. Is that enough
evidence to conclude that the coin is not fair?

Suppose the coin was fair. What is the likelihood that we will see 225 heads
or fewer in 500 tosses? Let Y denote the number of heads in 500 tosses. Then,
if the coin is fair,

Y ~ Binomial (;, 500)

P(X < 225) = % (21k> (;)500.

k=0

Thus,

We can do this calculation or approximate it as follows:
By the Central Limit Theorem, we know that

Yn —np

————— =~ Z ~ Normal(0, 1)
np(1 = p)

if Y,, ~Binomial(n,p) and n is large. In this case n = 500, p = 1/2. Thus,

np = 250 and \/np(1 — p) = 1/250(3) = 11.2. We then have that

Pr <X_250 < 2.23>

Pr(X < 225) T

= Pr(Z < -223)

~2.23
1
= e~'/2 dz.

oo V2T

The value of Pr(Z < —2.23) can be obtained in at least two ways:
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1. Using the normdist function in MS Excel:

Pr(Z < —2.23) = normdist(—2.23,0, 1, true) ~ 0.013.

2. Using the table of the standard normal distribution function on page 861
in the text. This table lists values of the cdf, F,(z), of Z ~ Normal(0, 1)
with an accuracy of four decimal palces, for positive values of z, where z
is listed with up to two decimal places.

Values of F,(z) are not given for negative values of z in the table on page
778. However, these can be computed using the formula

Fz(fz) = lsz(Z)

for z > 0, where Z ~ Normal(0, 1).
We then get

F,(~223)=1-F,(2.23) ~ 1 — 0.9871 = 0.0129

We then get that Pr(X < 225) =~ 0.013, or about 1.3%. This is a very small
probability. So, it is very likely that the coin we have is the trick coin.
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Chapter 9

Introduction to Estimation

In this chapter we see how the ideas introduced in the previous chapter can
be used to estimate the proportion of voters in a population that support a
candidate based on the sample mean of a random sample.

9.1 Point Estimation

We have seen that if Xi, X»,..., X, is a random sample from a distribution of
mean g, then the expected value of the sample mean X, is

E(X,) = p.
We say that X,, is an unbiased estimator for the mean p.

Example 9.1.1 (Unbiased Estimation of the Variance). Let X1, Xs,..., X, be
a random sample from a distribution of mean ; and variance o2. Consider

n

D (Xe—p)? =

k=1

NE

(X7 —2uX) + 7]

>
Il

1

X,z — 2uZXk + np?
k=1 k=1

I
M=

n

= ZX,? —2unX, + nuz.
k=1

115
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On the other hand,

n

S (Xp =X = Y [XF-2XauXe + X,
k=1 k=1

XP—2X, > Xi +nX,
k=1

Il
o
I M:
L

X2~ X Xn +nX

n

Il
bl
[ M:
L

Consequently,
n n L e L L
Z(Xk T Z(Xk - X,)? = nX, —2unX, +np® =n(X, —p
k=1 k=1

It then follows that

n

S (X~ X7 = 3 (X — ) (X - ).

k=1 k=1

Taking expectations on both sides, we get

E (i(Xk - Xn)2>

k=1

N E[(X5 — w)?] —nE (X, — )?]
k=1

= Z o? — nVar(X,,)
k=1

02

Thus, dividing by n — 1,
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called the sample variance, is an unbiased estimator of the variance.
Note that the estimator

n

1 _
Go=—) (Xp—X,)’
o= 2 (X )

k=1

is not an unbiased estimator for ¢2. Indeed, it can be shown that

0.2

E@G?) =0% — —.

The random variable 52 is called the maximum likelihood estimator for the

variance, o2.

9.2 Estimating the Mean

In Problem 1 of Assignment #21 you were asked to show that the sequence of
sample means, (X,,), converges in distribution to a limiting distribution with

pmf
(2) 1 ifx =y
€Tr) =
P 0 elsewhere.

It then follows that, for every € > 0,

lim Pr(X, <pu+e)=Pr(X, <pu+te) =1,

I

n—oo

while
lim Pr(X, <p—¢)=Pr(X,)<p—¢)=0.
n—oo

Consequently,

lim Pr(p—e< X, <p+e)=1

n—oo
for all £ > 0. Thus, with probability 1, the sample means, X, will be within
an arbitrarily small distance from the mean of the distribution as the sample
size, n, increases to infinity.

This conclusion was attained through the use of the mgf Convergence Theo-
rem, which assumes that the mgf of X; exists. However, the result is true more
generally; for example, we only need to assume that the variance of X; exists.
This assertion follows from the following inequality Theorem:

Theorem 9.2.1 (Chebyshev Inequality). Let X be a random variable with mean
w and variance Var(X). Then, for every e >0,

X
Pr(IX = p| > &) < Y X)

2



118 CHAPTER 9. INTRODUCTION TO ESTIMATION

Proof: We shall prove this inequality for the case in which X is continuous with
pdf f. .
Observe that Var(X) = E[(X — p)?] = / |z — p|?fy (z) dz. Thus,

—00

Var(X) > / & — u?f (@) dr,

e

where A. = {x € R| |x — p| > ¢}. Consequently,
Var(X) > 52/ fy(z) do = 2Pr(A.).
A
we therefore get that

Var(X)
22

Pr(Ae) <

or

Pr(|X — i > €) <
O

_ Applying Chebyshev Inequality to the case in which X is the sample mean,
X, we get
— Var(X,) o2
Pr((Xn sl >e) < o =
We therefore obtain that
o

Thus, letting n — oo, we get that, for every € > 0,

lim Pr(|X, —ul <e)=1.

n—oo

We then say that X,, converges to 1 in probability and write

Xnﬂuz as n — o0.

This is known as the weak Law of Large Numbers.

Definition 9.2.2 (Convergence in Probability). A sequence, (Y,,), of random
variables is said to converge in probability to b € R, if for every e > 0

lim Pr(]Y, —b| <e)=1.

n—oo

We write

Ynﬂﬂ) as n — 0o.
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Theorem 9.2.3 (Slutsky’s Theorem). Suppose that (Y,,) converges in proba-
bility to b as n — oo and that g is a function which is continuous at b. Then,
(9(Yn)) converges in probability to g(b) as n — oo.

Proof: Let € > 0 be given. Since g is continuous at b, there exists > 0 such
that

ly —bl <d=lg(y) —g(b)| <e.

It then follows that the event As = {y | |y — b| < 0} is a subset the event
B. ={y | lg9(y) — g(b)| < e}. Consequently,

Pr(As) < Pr(B:).
It then follows that

Pr(|Y, — b < 0) < Pr(Jg(Yn) —g(b)| <e) < 1. (9.1

Now, since Y, E) b asn — oo,
lim Pr(|Y,, — b <d)=1.
n—oo
It then follows from Equation (9.1) and the Squeeze or Sandwich Theorem that
lim Pr(jg(Yn) —g(b)| <e) =1.
n—roo
O
Since the sample mean, X,,, converges in probability to the mean, i, of

sampled distribution, by the weak Law of Large Numbers, we say that X,, is a
consistent estimator for u.

9.3 Estimating Proportions

Example 9.3.1 (Estimating Proportions, Revisited). Let X;, Xo, X3,... de-
note independent identically distributed (iid) Bernoulli(p) random variables.
Then the sample mean, X, is an unbiased and consistent estimator for p. De-
noting X, by pn, we then have that

E(p,)=p foralln=1,2,3, ...,

and

~ Pr
DPn —> P asn — oo;

that is, for every ¢ > 0,

lim Pr(|p, —p| <e)=1.
n—oo



120 CHAPTER 9. INTRODUCTION TO ESTIMATION

By Slutsky’s Theorem, we also have that

= — P
\/pn(l — Dn) LN \/p(l —p) asn— 0.

Thus, the statistic \/p,(1 — p,) is a consistent estimator of the standard devi-
ation o = 1/p(1 — p) of the Bernoulli(p) trials X7, Xo, X3, ...
Now, by the Central Limit Theorem, we have that

Jim pr (2R <) =Pz <o),

where Z ~ Normal(0, 1), for all z € R. Hence, since \/pn(1 — Py,) is a consistent
estimator for o, we have that, for large values of n,

r| — Pn —Ap <z | =~Pr(Z<2),
pn(l _pn)/\/ﬁ

for all z € R. Similarly, for large values of n,

D —
<\/pn 1_pn /\F ) -

subtracting this from the previous expression we get

Pr{—2< P
VD 1 —Pn) /\/>
for large values of n, or

Pr ( P—Dn z)zPr

~Pr(—2<Z<2)
(

—2< Z<z)

\/ 1*pn /\/>

for large values of n.
Now, suppose that z > 0 is such that Pr(—z < Z < z) > 0.95. Then, for
that value of z, we get that, approximately, for large values of n,

Pr <A V ﬁn(l _ﬁn) ~ V ﬁn$_ ﬁn)) 2 0.95

pn—zin SPp<pPn+z

Thus, for large values of n, the intervals

5 _ VPP o VPP
v vn

n

have the property that the probability that the true proportion p lies in them
is at least 95%. For this reason, the interval
~ \/ pn pn \/ ]/)\n(l _Z/)\n)
, +z
Vn

p n 7L
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is called the 95% confidence interval estimate for the proportion p. To
find the value of 2 that yields the 95% confidence interval for p, observe that

Pr(—2<Z<2)=F,(2) —F,(—2) =F,(2) —(1—-F,(2)) =2F,(z) — 1.
Thus, we need to solve for z in the inequality
2F,(z) —1>0.95

or
F,(z) > 0.975.

This yields z = 1.96. We then get that the approximate 95% confidence
interval estimate for the proportion p is

N )
|}7n 1.96 NG

~ V ﬁn(l - ﬁn)

9 pn + 1-96 \/ﬁ

Example 9.3.2. A random sample of 600 voters in a certain population yields

53% of the voters supporting certain candidate. Is this enough evidence to to

conclude that a simple majority of the voters support the candidate?
Solution: Here we have n = 600 and p,, = 0.53. An approximate 95%

confidence interval estimate for the proportion of voters, p, who support the

candidate is then

1/ 0. 4 1/ 0. 4
0.53 — 1.96m, 0.53 + 1.96m
V60 V600

)

or about [0.49,0.57). Thus, there is a 95% chance that the true proportion is
below 50%. Hence, the data do not provide enough evidence to support that
assertion that a majority of the voters support the given candidate. U

Example 9.3.3. Assume that, in the previous example, the sample size is 1900.
What do you conclude?

Solution: In this case the approximate 95% confidence interval for p is
about [0.507,0.553). Thus, in this case we are “95% confident” that the data
support the conclusion that a majority of the voters support the candidate. [J

9.4 Interval Estimates for the Mean

In the previous section we obtained an approximate confidence interval (CI)
estimate for p based on a random sample (X}) from a Bernoulli(p) distribu-
tion. We did this by using the fact that, for large numbers of trials, a bino-
mial distribution can be approximated by a normal distribution (by the Central
Limit Theorem). We also used the fact that the sample standard deviation
/Pn(1 —Dy) is a consistent estimator of the standard deviation o = /p(1 — p)
of the Bernoulli(p) trials X7, X5, X3,.... The consistency condition might not
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hold in general. However, in the case in which sampling is done from a normal
distribution an exact confidence interval estimate may be obtained based on on
the sample mean and variance by means of the ¢—distribution. We present this
development here and apply it to the problem of obtaining an interval estimate
for the mean, y, of a random sample from a Normal(y, o?) distribution.

We first note that the sample mean, X,,, of a random sample of size n from
a normal(u, 02) follows a normal(yu, 0% /n) distribution. To see why this is the
case, we can compute the mgf of X, to get

Y (f) = ettt n
Xn ’

where we have used the assumption that X7, Xo, ... are iid Normal(u, 0?) ran-
dom variables.
It then follows that

Xn — M
a/vn

~ Normal(0,1), for all n,

so that L
Pr [Xn = pl <z =Pr(|Z] <2z), forall zeR, (9.2)
a/vn
where Z ~ normal(0, 1).
Thus, if we knew o, then we could obtain the 95% CI for p by choosing
z =1.96 in (9.2). We would then obtain the CI:
_ o — o
X, —196—,X 1.96— .
T X e 7
However, o is generally an unknown parameter. So, we need to resort to a
different kind of estimate. The idea is to use the sample variance, S2, to estimate

o2, where
n

D (X = Xn)? (9.3)

k=1

1

n—1

s2 =

n

Thus, instead of considering the normalized sample means

Xn_/’L
a//n’

we consider the random variables
yn — K
Su/

The task that remains then is to determine the sampling distribution of T;,.
This was done by William Sealy Gosset in 1908 in an article published in the
journal Biometrika under the pseudonym Student. The fact the we can actually
determine the distribution of 7}, in (9.4) depends on the fact that X7, Xo,..., X,
is a random sample from a normal distribution and some properties of the 2
distribution.

T, =

(9.4)
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9.4.1 The y? Distribution

Example 9.4.1 (The Chi-Square Distribution with one degree of freedom).
Let Z ~ Normal(0, 1) and define X = Z2. Give the probability density function
(pdf) of X.

Solution: The pdf of Z is given by

1
fx(2) = 6722/2, for —oo <z < o0.

V2r

We compute the pdf for X by first determining its cumulative density function
(cdf):
P(X<z) = P(Z*<az) fory>0
= P(—Vz<Z< Vr)
= P(—z < Z <\/z), since Z is continuous.
Thus,

P(X <x) P(Z <\x)—P(Z < —x)

= F,(Vz)—F,(—z) forz >0,

since X is continuous.
We then have that the cdf of X is

F(z)=F,(Vz) — F,(—/xz) forz >0,

, 1 , 1

Ix(@) = FZ(\/E)'7+FZ(*\/E)'ﬁ
LD+ (VD)

1 e—ac/2 - e—gc/2

{m R }

from which we get, after differentiation with respect to x,
2z
2\/x 2\/x
e—z/2

Sl

[(\&)
R

for x > 0. O
Definition 9.4.2. A continuous random variable, X having the pdf

1 1

0 otherwise,

e %2 ifr>0

is said to have a Chi-Square distribution with one degree of freedom. We write

Y ~ x%(1).
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Remark 9.4.3. Observe that if X ~ x?(1), then its expected value is
E(X)=E(Z% =1,
since var(Z) = E(Z?%) — (E(Z))?, E(Z) = 0 and var(Z) = 1. To compute the

second moment of X, E(X?) = E(Z*), we need to compute the fourth moment
of Z. In order to do this, we us the mgf of Z, which is

Y, (t) = e’/2 for all t € R.
Its fourth derivative can be computed to be
YW (t) = (34662 +1Y) /2 forall t € R.

Thus,
E(Z") = yP(0) = 3.
We then have that the variance of X is
Var(X) = BE(X?) - (BE(X))*=E(Z")-1=3-1=2.

Suppose next that we have two independent random variable, X and Y,
both of which have a x?(1) distribution. We would like to know the distribution
of the sum X + Y.

Denote the sum X +Y by W. We would like to compute the pdf fy,. Since
X and Y are independent, fyy is given by the convolution of fx and fy; namely,

+oo
fu (w) = / Fo (W) fy (w — u)du,

— 00
where
11, 11,
—— e , x>0 ———e" Yy >0
fele)={ V2TVE folyy={ VIV
0; elsewhere, 0, otherwise.

We then have that

folw) = / ﬁ e )

since f (u) is zero for negative values of u. Similarly, since f, (w — u) = 0 for
w—u < 0, we get that

—u/2 ef(wfu)/Z du

w 1 1
futw) = [ NN AN ==

efw/Z

v 1
du.
2 /0 Vuvw —u “
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Next, make the change of variables ¢t = y Then, du = wdt and
w

ew/2 w
fulw) = / dt
2 Jo Vwtv/w — wt
e—w/2

1
1
/ d.
27 Jo VivI i

Making a second change of variables s = v/t, we get that ¢t = s? and dt = 2sds,
so that

e~w/2 t 1 d
fulw) = / s ds

—w/2
= & Jarcsin(s)]}
™

e™"/? for w >0,

1
2
and zero otherwise. It then follows that W = X + Y has the pdf of an
Exponential(2) random variable.

Definition 9.4.4 (y? distribution with n degrees of freedom). Let X1, Xo,..., X,
be independent, identically distributed random variables with a x?(1) distribu-
tion. Then then random variable X; + X5 + --- + X,, is said to have a x?
distribution with n degrees of freedom. We write

X1+ Xo+ -+ X ~ x2(n).

By the calculations preceding Definition 9.4.4, if a random variable, W, has
a x%(2) distribution, then its pdf is given by

—w/2

e for w > 0;

DO =

fw (w) =
0 for w < 0;

Our goal in the following set of examples is to come up with the formula for the
pdf of a x?(n) random variable.

Example 9.4.5 (Three degrees of freedom). Let X ~ Exponential(2) and
Y ~ x*(1) be independent random variables and define W = X + Y. Give
the distribution of W.

Solution: Since X and Y are independent, by Problem 1 in Assignment
#3, f, is the convolution of f, and f,:

fw(w) = fx *fy(w)

-/ Z Fo () fy (w — u)du,
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where

1e_””/Q if z>0;
fx(@) =
0 otherwise;
and 1 1 e
Eﬁ e if y>0;
fr(y) =
0 otherwise.

It then follows that, for w > 0,

fulw) = [T e 0 - waa

w1 1 1

_ So-uw/2_ - - 7(w7U)/2d

e e u
/0 2 V2T VJw —u

e~w/2 v d
u.
22w Jo Vw—u

Making the change of variables t = u/w, we get that « = wt and du = wdt, so
that

e—w/2 1 1

wdt
227 Jo Vw — wt

Vw e w2 b gt
2427 0o V91—t

w e w/2 1
e

fiw(w) =

1
_ —w/2
= — Jwe ,
V2T v

for w > 0. It then follows that

1
— Vwe ? if w>0;
V2
fow (w) =
0 otherwise.
This is the pdf for a x?(3) random variable. O

Example 9.4.6 (Four degrees of freedom). Let X,Y ~ exponential(2) be in-
dependent random variables and define W = X + Y. Give the distribution of
w.
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Solution: Since X and Y are independent, f,, is the convolution of f, and
fy:
fW(w) = fx * fy(w)

-/ O; Fe(@)fy (w = w)du,

where
%eii/z if z>0;
fx(z) =
0 otherwise;
and )
5 eV ity >0,
frly) =
0 otherwise.

It then follows that, for w > 0,

fulw) = [ 5ew- wda

W
_ / 1wl w2y,
0 2

2
—w/2 w
- ¢ / du
4 0
w efw/Z
= —
for w > 0. It then follows that
1
Y e 2 if w>0;
fW (w) =
0 otherwise.
This is the pdf for a x?(4) random variable. O

We are now ready to derive the general formula for the pdf of a x?(n) random
variable.

Example 9.4.7 (n degrees of freedom). In this example we prove that if W ~
x2(n), then the pdf of W is given by
1 2-1 —w/2 .
W w2 e if w > O,
fw (w) = (9.5)

0 otherwise,
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where I' denotes the Gamma function defined by
I'(z) = / t*“le7tdt for all real values of z except 0,—1,—2,—3,...
0

Proof: We proceed by induction of n. Observe that when n = 1 the formula in
(9.5) yields, for w > 0,

I S S Ry S Sy
fW(’IU) - 1—1(1/2) 21/2 N € - /277 \/5 € ’

which is the pdf for a x?(1) random variable. Thus, the formula in (9.5) holds
true for n = 1.

Next, assume that a x2(n) random variable has pdf given (9.5). We will
show that if W ~ x?(n + 1), then its pdf is given by

1 n—1
—w/2 .
T((n+1)/2) 2001/ wz e 2 i w>0;
fiw (w) = (9.6)

0 otherwise.

By the definition of a x?(n + 1) random variable, we have that W = X +Y
where X ~ x2(n) and Y ~ x?(1) are independent random variables. It then
follows that

fw = fx * fy
where 1
-1 —z/2 .
T(nj2) 202 ©° ¢ it @>0;
fx (x) =
0 otherwise.
and L1
———— Y% if y>0;
V21 Y ’
fY (y) =
0 otherwise.
Consequently, for w > 0,
v 1 ny w1 1 —(w—u)/2
= — 2 JE— d
futw) = T2 ¢ Vv u v
efw/2 w51

du.
T(n/2)y/m 204072 J o —a

Next, make the change of variables t = u/w; we then have that u = wt, du = wdt
and

—1
w T e w/? bzt

fw (w) = F(n/?)ﬁ o(n+1)/2 ; \/ﬁdt
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Making a further change of variables t = 22, so that dt = 2zdz, we obtain that
2w T e w/2

1 Zn—l
fw(w) = F(n/2)ﬁ2(”+l)/2/o mdz'

It remains to evaluate the integrals

(9.7)

1 _
an

—d
0 \/1—22

We can evaluate these by making the trigonometric substitution z = sinf so
that dz = cos 6df and

1 Zn—l 7\'/2 1
—dz = sin™ ™" 6d6.
/0 V1— 22 /0

Looking up the last integral in a table of integrals we find that, if n is even and
n > 4, then
/2 1-3-5---(n—2)
son—1
0do =
/0 S 246 (n—1)

which can be written in terms of the Gamma function as

gy 23]
/0 sin" ™" 6df = ) . (9.8)

z forn=1,2,3,...

Note that this formula also works for n = 2.
Similarly, we obtain that for odd n with n > 1 that

/2
/ sin” "1 0de = % g
0 an=1 [T (%3]

Now, if n is odd and n > 1 we may substitute (9.9) into (9.7) to get

n—1
2w T e /2 I'(n
fw(w) = 1

[(n/2)/m 207072 g1 [ (2£1)]2 2

whT e /2 T'(n)y/m
['(n/2) 2(n+1)/2 gn_1 T (nTH)]Q'

Now, by Problem 5 in Assignment 1, for odd n,

r(3) = 5ty

It the follows that

wn;l 67w/2

Jur(w) = T (Z) 20D)/2
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for w > 0, which is (9.6) for odd n.
Next, suppose that n is a positive, even integer. In this case we substitute
(9.8) into (9.7) and get

—1

2u'Te /2 22 [0 ()]
[(n/2)/7 2(0+1)/2 L'(n)

fw(w) =

or / L ( )
wanle*“’ 2 on—17 (n

fw(w) = 9(n+1)/2 ﬁl“(nz)

Now, since n is even, n 4+ 1 is odd, so that by by Problem 5 in Assignment 1
again, we get that

n+1\ Tn+1)y/m  nl(n)y/m
P(*) = 2T~ arty

(9.10)

from which we get that

Val(n) ~ T(22)

Substituting this into (9.10) yields

2n~1T (2) 1

wn;l e_w/2

fw(w) = T (2 2172

for w > 0, which is (9.6) for even n. This completes inductive step and the
proof is now complete. That is, if W ~ x2(n) then the pdf of W is given by

1 2-1 —w/2 .
W w 2 e if w> 0,

fiw (w) =

0 otherwise,

forn=1,2,3,... O

9.4.2 The ¢ Distribution

In this section we derive a very important distribution in statistics, the Student
t distribution, or ¢ distribution for short. We will see that this distribution will
come in handy when we complete our discussion interval estimates for the mean
based on a random sample from a Normal(yu,o?) distribution.

Example 9.4.8 (The t distribution). Let Z ~ normal(0,1) and X ~ x?(n —1)
be independent random variables. Define
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Give the pdf of the random variable T'.
Solution: We first compute the cdf, F., of T'; namely,

F, () = PrT <t

= Pr (Z gt)
X/(n—1)

//R foxz (@, 2)dadz,

where R; is the region in the xz—plane given by
Ry ={(z,2) e R? | z < t\/z/(n— 1),z > 0},
and the joint distribution, f , . of X and Z is given by
foxm(@2)=fy(x)- f,(2) for x>0and z€R,
because X and Z are assumed to be independent. Furthermore,

1 S

F(%) CEE if x> 0;
fx(@) =
0 otherwise,
and )
— -22/2  qor _
z) = e , for —o0 <z < 0.
f2) = o=

We then have that

Ve/(n=1) %3 e—(@+2%)/2
/ / n 1)f22 dzdz.

Next, make the change of variables

u = x
z
vo= ,
x/(n—1)

so that
r = u
z = wvyu/(n—1).

Consequently,

F (1) = —(utuv?/(n—1))/2
= () F N3 22 / / u,

v

I(z,

2)
)

131

dudv,
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where the Jacobian of the change of variables is

1 0
oz,2) det
O(u, v) v/2y/uvn —1  u'/?/yn—1
ul/2
= ﬁ,.

It then follows that

1 t oo 2
o ) us—! 67(u+uv /(”71))/2dud1}-
(1) F(%_l) (n—1)r 2% [m/o

Next, differentiate with respect to ¢t and apply the Fundamental Theorem of
Calculus to get

1 o n_1 _ 2 _
t _ u? e (utut®/(n 1))/2du
I () r(24)/(n—1)m 23 /0

L [T g,
I’("—_l) (n—1)m 2% Jo

Put « = — and 8 = ————. Then,
ut « nd 1+nt721 n
frt) = ! /mu“—l e By
i F("T_l) (n—1)m 2> Jo
- I(a)3° [ wrt gt
TN Vi Dr2 b T@pe
where ) /8
utT e
—— if u>0
['(a)B*
fU (U) =
0 if ©u<0

is the pdf of a T'(«, 8) random variable (see Problem 5 in Assignment #22). We
then have that

f-(t) = Do) for t e R.

r(%2) /(n—1)m 2o

Using the definitions of a and 8 we obtain that

() = L () : ! for t € R.

L (%54) V(n =D ( nt2 )"/2
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This is the pdf of a random variable with a ¢ distribution with n — 1 degrees of
freedom. In general, a random variable, T, is said to have a ¢ distribution with
r degrees of freedom, for r > 1, if its pdf is given by
L (%) L
fr(t) = F(%)\/ﬁ < NG for t e R.
1+5)

r

We write T' ~ t(r). Thus, in this example we have seen that, if Z ~ norma(0, 1)
and X ~ x2(n — 1), then

Z

—— ~t(n-—1).
VX[ -1
O
We will see the relevance of this example in the next section when we continue
our discussion estimating the mean of a norma distribution.

9.4.3 Sampling from a normal distribution

Let X;,Xs,...,X, be a random sample from a normal(u,o?) distribution.
Then, the sample mean, X,, has a normal(u, o2 /n) distribution.
Observe that
< vnb

g

)

- Yn_/’(‘
X,—ul<be
| I ’cr/\/ﬁ

where o
XTL — K

o/vn

~ Normal(0, 1).

Thus,
— b
Pr(|X, —p| <b)=Pr <|Z| < ﬁ) , (9.11)
o
where Z ~ Normal(0, 1). Observe that the distribution of the standard normal
random variable Z is independent of the parameters p and o. Thus, for given
values of z > 0 we can compute P(|Z| < z). For example, if there is a way of

knowing the cdf for Z, either by looking up values in probability tables or using
statistical software packages to compute then, we have that

Pr(|Z|<z) = Pr(—z2<Z<z2)
= Pr(—z2<Z<2)
= Pr(Z<z2)—Pr(Z<-2)

= F

z
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where F,(—z) =1— F,(z), by the symmetry if the pdf of Z. Consequently,
Pr(|Z| < 2) =2F,(z)—1 for z>0.

Suppose that 0 < a < 1 and let z_,, be the value of z for which Pr(|Z] < z) =

1 — a. We then have that z_,, satisfies the equation

Thus,
1 «
tep = F (1= 5) : (9.12)

where F I denotes the inverse of the cdf of Z. Then, setting

Vb _

g

Zoy2

we see from (9.11) that

Pr (an - ,U,| < Za/2 ;ﬁ) =1

—a,
which we can write as
— o
Pr <|:U‘_X"L|<Za/2\/ﬁ) :1—()[,
or
Pr (X 7 X 7)) =
T n_ZG/2ﬁ<M< n+Za/2% —1—04, (913)

which says that the probability that the interval

— g — g
<Xn_2a/2\/ﬁ7Xn+Za/2\/ﬁ> (914)

captures the parameter p is 1 —a. The interval in (9.14) is called the 100(1—a)%
confidence interval for the mean, u, based on the sample mean. Notice that
this interval assumes that the variance, o2, is known, which is not the case in
general. So, in practice it is not very useful (we will see later how to remedy this
situation); however, it is a good example to illustrate the concept of a confidence
interval.

For a more concrete example, let o = 0.05. Then, to find z_,, we may use
the NORMINV function in MS Excel, which gives the inverse of the cumulative
distribution function of normal random variable. The format for this function
is

NORMINV (probability,mean,standard_dev)
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In this case the probability is 1 — % = 0.975, the mean is 0, and the standard

deviation is 1. Thus, according to (9.12), z_, is given by

NORMINV(0.975,0,1) ~ 1.959963985

or about 1.96.

You may also use WolframAlpha™ to compute the inverse cdf for the stan-
dard normal distribution. The inverse cdf for a Normal(0, 1) in WolframAlpha™
is given

InverseCDF [NormalDistribution[0,1], probability].

For a = 0.05,

z_,, ~ InverseCDF[NormalDistribution|0, 1],0.975] ~ 1.95996 ~ 1.96.

o/

Thus, the 95% confidence interval for the mean, y, of a normal(u, 02) distribu-

tion based on the sample mean, X, is

(Xn —1.96-2, X, + 1.962) : (9.15)

V' vn

provided that the variance, o2, of the distribution is known. Unfortunately, in
most situations, o2 is an unknown parameter, so the formula for the confidence
interval in (9.14) is not useful at all. In order to remedy this situation, in 1908,
William Sealy Gosset, writing under the pseudonym of A. Student (Biometrika,
6(1):1-25, March 1908), proposed looking at the statistic

Xn_/’(‘
T, = ;

where S2 is the sample variance defined by

1 —
n_lz(XﬁXn) .
1=1

8% =

Thus, we are replacing ¢ in o
Xn — MK
a/v/n

by the sample standard deviation, S,,, so that we only have one unknown pa-
rameter, p, in the definition of T;,.

In order to find the sampling distribution of T,,, we will first need to deter-
mine the distribution of S2, given that sampling is done form a normal(u, o?)
distribution. We will find the distribution of S2 by first finding the distribution
of the statistic

1 & -
Wn=— > (X —Xn)* (9.16)
=1
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Observe that n
W, = —o2

o2 "

where 52 is the maximum likelihood estimator for o2.
Starting with

Z(Xz - ,U)Z = Z(Xz - Yn)2 + n(yn - :U')Qa (9.17)

Zn:(Xi - X,)=0. (9.18)

Next, dividing the equation in (9.17) by o2 and rearranging we obtain that
2

SO e (TR) . e

i=1

where we have used the definition of the random variable W, in (9.16). Observe

that the random variable
n 2
> (=t
o)

i=1

has a x?(n) distribution since the X;s are iid Normal(u, 0?) so that

X —
o

~ Normal(0,1), fori=1,2,3,...,n,

and, consequently,
Xi—p\?
(“) ~x3(1), fori=1,2,3,...,n.
o

Similarly,
2

(Grt) =

since X,, ~ Normal(u,0%/n). We can then re-write (9.19) as

Y =W, + X, (9.20)

where Y ~ x%(n) and X ~ x2(1). If we can prove that W,, and X are inde-
pendent random variables (this assertion will be proved in the next section), we
will then be able to conclude that

W, ~ x*(n—1). (9.21)
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To see why the assertion in (9.21) is true, if W,, and X are independent, note
that from (9.20) we get that the mgf of Y is

wY (t) = wwn (t) ' wx (t)>
by independence of W,, and X. Consequently,

¥y (1)
¥ (t)

X
1 n/2
1—-2¢

1 1/2
1—2t

1 (n—1)/2
1—-2¢t ’

which is the mgf for a x?(n — 1) random variable. Thus, in order to prove

— 2
Xn — M :

are independent random
o//n ) P

Y, ()

(9.21), it remains to prove that W, and (

variables.

9.4.4 Distribution of the Sample Variance from a Normal
Distribution

In this section we will establish (9.21), which we now write as

(n—1)
ng ~x%*(n—1). (9.22)
As pointed out in the previous section, (9.22)will follow from (9.20) if we can

prove that

n ~ 2
1 _ X, —
— E (X; — X,)? and < M) are independent. (9.23)
o
i=1

o/vn

In turn, the claim in (9.23) will follow from the claim

n
Z(Xi — X,)? and X,, are independent. (9.24)

i=1
The justification for the last assertion is given in the following two examples.

Example 9.4.9. Suppose that X and Y are independent independent random
variables. Show that X and Y2 are also independent.



138 CHAPTER 9. INTRODUCTION TO ESTIMATION

Solution: Compute, for z € R and u > 0,

Pr(X <z,Y?<u) = Pr(X <ua|Y|<Vu)

Pr(X <o, —Vu<Y < Vu)

— Pr(X <a)-Pr(—Va <Y <),
since X and Y are assumed to be independent. Consequently,
Pr(X <z,Y?<u) = Pr(X<uz) Pr(Y?<u),
which shows that X and Y2 are independent. O

Example 9.4.10. Let a and b be real numbers with a # 0. Suppose that X
and Y are independent random variables. Show that X and aY + b are also
independent.

Solution: Compute, for z € R and w € R,

—b
Pr(X <z,aY +b<w) = Pr<X<x,Y<“’ >

a

= Pr(ng)-Pr(ng_b>,
a

since X and Y are assumed to be independent. Consequently,
PrX <z,aY +b<w) = Pr(X <uz) Pr(aY +b < w),

which shows that X and aY + b are independent. (|

Hence, in order to prove (9.22) it suffices to show that the claim in (9.24) is
true. To prove this last claim, observe that from (9.18) we get

X1 - Kn=- i(xi - X,

=2

so that, squaring on both sides,

n 2
(Xl - Yn)2 = (Z(Xz Xn)) :

Hence, the random variable

i(Xi -X,)? = (zn:(xi Xn)> + En:(Xi - X,)?

i=1 1=2

is a function of the random vector

(X2_Yn7X3_Xn7-~-aXn_Yn)-
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Consequently, the claim in (9.24) will be proved if we can prove that
X, and (X3 — X,,X3— X,,..., X, — X,) are independent. (9.25)

The proof of the claim in (9.25) relies on the assumption that the random
variables X1, Xo,..., X, are iid normal random variables. We illustrate this
in the following example for the spacial case in which n = 2 and X7, Xs ~
Normal(0, 1). Observe that, in view of Example 9.4.10, by considering

Xi—

g

for 1 =1,2,...,n,

we may assume from the outset that X7, X, ..., X, are iid Normal(0, 1) random
variables.

Example 9.4.11. Let X; and X» denote independent Normal(0,1) random
variables. Define

_KAX g v X

v 2 2

Show that U and V independent random variables.
Solution: Compute the cdf of U and V:

F, . (uv) = Pr(U<u,V <v)

(U,v)

X X Xo— X
= Pr( 1—; 2<u, 22 1<’u>

= PI‘(X1+X2<2U7X27X1<2U)

// f(Xl,x2)($17$2)dx1dx2,
R

u,v

where R, , is the region in R? defined by
Ry, ={(z1,22) € R? | 21 + 2o < 2u, 20 — 21 < 20},

and f(XI,X2) is the joint pdf of X; and Xs:

1
f T1,T2) = e @He)/2 gop all z1,9) € R?,
(X1,X2) o

where we have used the assumption that X; and X, are independent normal(0, 1)
random variables.
Next, make the change of variables

r=x1+x9 and w=xy— Tq,

so that

r—w d =z r4+w
an =
2 2 2
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and therefore

Thus, by the change of variables formula,

2u 2v 1 —(72+w2)/4
F(Uﬁv)(u,v) = ] %e

where

Thus,

F

(U, V)

CHAPTER 9. INTRODUCTION TO ESTIMATION

2 2
]+ a5 =

0(x1,x2)

Ar,w)

(u,v)

which we can write as

F . (u,v)

(,v)

det

2

1
7(7"2 + w2).

0(x1,x2)
A(r,w)
1/2 —1/2 .
e 12) 2

dwdr,

1 2u 2v 2 214
y= / e "/t e A dudr,
T J-ooJ—c

1 [
—r</4 dr -
23/ /,ooe " VT

1

2v

e /4 qup.

21 J_o

Taking partial derivatives with respect to u and v yields

f(U,V) (u7 ’U)

ﬁe

1

21

—Uu

e

)

where we have used the fundamental theorem of calculus and the chain rule.
Thus, the joint pdf of U and V is the product of the two marginal pdfs

and

To prove in general that if X, Xo,...

folw) = o=
fo) = =

N

Hence, U and V are independent random variables.

Normal(0, 1) distribution, then

X, and

for — oo < u < o0,

for —oo < v < o0.

(XQ_YmXS_Ym-”aXn_Yn)

O

, X, is a random sample from a

are independent,

we may proceed as follows. Denote the random vector

(X — Xy X5 — Koy, X — Xo)

by Y, and compute the cdf of X,, and Y

e

u, v2,

U3

yersUn)
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where
Ruws,.ow, ={(z1,22,...,20) ER" | T < U220 —T < v2,..., 2 — T
x I “ .. x
for 7 = ks Tkl 2 and the joint pdf of X1, Xs,..., X, is
n
LI s Ve
f(X1 Xoo Xn)(xl,xg, Tp) = CORE e i=1%i for all (x1,zq,...

since X1, Xo,...,X,, are iid normal(0, 1).
Next, make the change of variables

y = x

Yo = Ty —T
Ys = T3 —T
Yn = Ty —T.

so that

n
Ty = yl_zyi
i=2

T2 = Y1ty
T3 = Y1+Yys3
Tn = Y1+ Yn,

and therefore

7

iw? = (yl —iyi>2+

(y1 + yi)2
i=2 =2

3

2
n
= nyf+<2yi> +> v
=2

=2

= ny%+c(y27y3a"'7yn)a

where we have set

141

< unt,

,Tp) € R",
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Thus, by the change of variables formula,

(771 Y) (

U, V2, ...

,’Un)

W e )2 | 3y,
= / / / Y ( 1 2 ) dyn...dyl,
—o0 J —o0 —0o0 (27‘—) 8(y17y2a-~-7yn)

where

O(x1,xa, ...

axn)
01,2, ---Yn)

— = =
|

—= =
|

—_ O =
|

O O

= det

1 0 0o --- 1

In order to compute this determinant observe that

nyi
nyz
nys

Yn

X1+ Ty +2x3+...2p

—r1+n—1Dzg—a3—...— 2y
—x1—xa+(n—1Daz—...—x,
-1 —23—x3— ...+ (n— 1z,

which can be written in matrix form as

'A% T1
Y2 T2
nlY¥B | =A4]%s

where A is the n X n matrix

1
-1
A=|"1
-1
whose determinant is
det A = det

yn :1771
1 1 1
(n—1) -1 -1
-1 (n—=1) --- -1
-1 -1 o (n=1)
1 1 1 1
0 n 0 0
0 0 n 0 n—1
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Thus, since

Z1 Y1
€2 Y2

LTn Yn
it follows that
o(ry,T9,...,T 1
( 1,42 n) _ det(nA_l) —nn. — —n.
a(ylay27~--yn) nn
Consequently,
(Xn,Y) ( ua”Q?"'a”ﬂ)

u v1 Un o= /2 o=C(y2,yn)/2
“ e dyn .. .dy17
A N

which can be written as

F(me)(u, Vye e, Up) =
2
u n efny1/2 U1 Un efc(y27~~-7yn)/2
700727r dyl.[m...lw 7(2#)(”—1)/2 dyy, - - - dys.

Observe that
U e mi/2

—d
oo V2w u

143

is the cdf of a normal(0, 1/n) random variable, which is the distribution of X,,.

Therefore

y2a 7yn)/2
F(me)(u,v%...,v / / @) ST Yo dyp, - - - dys,

which shows that X,, and the random vector
Y = (X2 _qux?) _Yna-”aXn _Y'n)
are independent. Hence we have established (9.22); that is,

n—1
=D n-1),

g

where S2 is the sample variance of a random sample of size n from a Normal(u, o

distribution.

)

%)
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9.4.5 The Distribution of T,

We are now in a position to determine the sampling distribution of the statistic
Sn/vn’
where X, and S2 are the sample mean and variance, respectively, based on a

random sample of size n taken from a Normal(u, o?) distribution.
We begin by re—writing the expression for 7,, in (9.26) as

T, (9.26)

Yn — M
T, = V" (9.27)

Sn
o

and observing that

Xn — M
o/vn

s_ [8_ [T
o Vo2 Vn-1

g

Zy = ~ Normal(0, 1).

Furthermore,

where

which has a x?(n — 1) distribution, according to (9.22). It then follows from
(9.27) that

n—1
where Z,, is a standard normal random variable, and V,, has a x? distribution
with n — 1 degrees of freedom. Furthermore, by (9.23), Z,, and V,, are indepen-
dent. Consequently, using the result in Example 9.4.8, the statistic T}, defined
in (9.26) has a t distribution with n — 1 degrees of freedom; that is,

Yn — M
Sn/V/n

Notice that the distribution on the right-hand side of (9.28) is independent
of the parameters 1 and o2; we can can therefore obtain a confidence interval
for the mean of of a normal(u, 0?) distribution based on the sample mean and
variance calculated from a random sample of size n by determining a value ¢, /o
such that

~t(n—1). (9.28)

Pr(|T,| <tay2) =1-a.

Pr{ =t <t =1-
: ( Sn/\/ﬁ < /2 %

We then have that
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or

__ Sh
Pr (|/L—Xn| < ta/2\/ﬁ) =1-q

- Sy, - Sn

We have therefore obtained a 100(1 — «)% confidence interval for the mean of a
normal(y, 0%) distribution based on the sample mean and variance of a random
sample of size n from that distribution; namely,

or

— o — Shn
X —tos Xn +tam—m ) . 9.29
R ) (029
To find the value for z,/, in (9.29) we use the fact that the pdf for the ¢

distribution is symmetric about the vertical line at 0 (or even) to obtain that

Pr(|T,| <t) = Pr(—-t<T,<t)

Pr(—t < T, <t)
= Pr(T, <t)—Pr(T, < —t)

= Fp (t) = Fp, (=),

Tn
where we have used the fact that T;, is a continuous random variable. Now, by
the symmetry if the pdf of 7, F,, (—t) =1— F, (t). Thus,

Pr(|T,| <t)=2F, (t)—1 for t>0.

Tn,

So, to find ¢, /2 we need to solve

@
FT-,,, (t) == 1 — 5
We therefore get that
_ @
tu, =Fp (1 - 5) ; (9.30)

where F . /1 denotes the inverse of the cdf of T,.

Example 9.4.12. Give a 95% confidence interval for the mean of a normal
distribution based on the sample mean and variance computed from a sample
of size n = 20.

Solution: In this case, @ = 0.5 and T,, ~ ¢(19).

To find ?_,, we may use the TINV function in MS Excel, which gives the
inverse of the two—tailed cumulative distribution function of random variable
with a ¢ distribution. That is, the inverse of the function

Pr(|T,| > ¢t) fort > 0.

The format for this function is
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TINV(probability,degrees_freedom)

0.05 and the number of
is given by

In this case the probability of the two tails is a =
degrees of freedom is 19. Thus, according to (9.30), ¢

a/2
TINV(0.05,19) ~ 2.09,

where we have used 0.05 because TINV in MS Excel gives two-tailed probability
distribution values.

We can also use WolframAlpha™ to obtain ¢, ,. In WolframAlpha™, the
inverse cdf for a random variable with a t distribution is given by the function
gt whose format is

InverseCDF [tDistribution[df] ,probability].

Thus, WolframAlpha™, we obtain for a = 0.05 and 19 degrees of freedom,

t.,., ~ InverseCDF[tDistribution[19],0.975] ~ 2.09.

Hence the 95% confidence interval for the mean, j, of a normal(y, o?) distribu-
tion based on the sample mean, X, and the sample variance, S2, is

— Sn = S
X,—209—,X,+209— |, 31

< 09\/5 + 09\/ﬁ> (9.31)

where n = 20. O



