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Solutions to Review Problems for Exam 2

1. Define the scalar field f : Rn → R by f(v) =
1

2
‖v‖2 for all v ∈ Rn. Show that

f is differentiable on Rn and compute the linear map Df(u) : Rn → R for all
u ∈ Rn. What is the gradient of f at u for all x ∈ Rn?

Solution: Let u and w be any vector in Rn and consider

f(u+ w) =
1

2
‖u+ w‖2

=
1

2
(u+ w) · (u+ w)

=
1

2
u · u+ u · w +

1

2
w · w

=
1

2
‖u‖2 + u · w +

1

2
‖w‖2;

so that,

f(u+ w) = f(u) + u · w +
1

2
‖w‖2. (1)

The equation in (1) suggests that we set

Df(u)w = u · w, for u,w ∈ Rn, (2)

and

E(u;w) =
1

2
‖w‖2, for u,w ∈ Rn. (3)

Note that
E(u;w)

‖w‖
=

1

2
‖w‖, for w 6= 0.

Consequently,

lim
‖w‖→0

|E(u;w)|
‖w‖

= 0.

Thus, in view of (1), (3) and (3), we have shown that f is differentiable at u
with derivative map Df(u) given in (2). We therefore see that ∇f(u) = u for
all u ∈ Rn. �

Alternate Solution: Alternatively, writing (x1, x2, . . . , xn) for u, we have that

f(u) =
1

2
(x21 + x22 + · · ·+ x2n), for all u ∈ Rn.
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Then, the partial derivatives of f are

∂f

∂xi
= x1, for i = 1, 2, . . . , n, (4)

which are continuous functions in Rn. Thus, f is C1 map and is therefore
differentiable.

According to (4), the gradient of f is given by

∇f(u) = (x1, x2, . . . , xn) = u, for all u ∈ Rn.

�

2. Let g : [0,∞)→ R be a differentiable, real–valued function of a single variable,
and let f(x, y) = g(r) where r =

√
x2 + y2.

(a) Compute
∂r

∂x
in terms of x and r, and

∂r

∂y
in terms of y and r.

Solution: Take the partial derivative of r2 = x2 + y2 on both sides with
respect to x to obtain

∂(r2)

∂x
= 2x.

Applying the chain rule on the left–hand side we get

2r
∂r

∂x
= 2x,

which leads to
∂r

∂x
=
x

r
.

Similarly,
∂r

∂y
=
y

r
. �

(b) Compute ∇f in terms of g′(r), r and the vector r = x̂i+ yĵ.

Solution: Take the partial derivative of f(x, y) = g(r) on both sides with
respect to x and apply the chain rule to obtain

∂f

∂x
= g′(r)

∂r

∂x
= g′(r)

x

r
.

Similarly,
∂f

∂y
= g′(r)

y

r
.
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It then follows that

∇f =
∂f

∂x
î+

∂f

∂y
ĵ

= g′(r)
x

r
î+ g′(r)

y

r
ĵ

=
g′(r)

r
(x̂i+ yĵ)

=
g′(r)

r
r.

�

3. Let f : U → R denote a scalar field defined on an open subset U of Rn, and let
û be a unit vector in Rn. If the limit

lim
t→0

f(v + tû)− f(v)

t

exists, we call it the directional derivative of f at v in the direction of the unit
vector û. We denote it by Dûf(v).

(a) Show that if f is differentiable at v ∈ U , then, for any unit vector û in Rn,
the directional derivative of f in the direction of û at v exists, and

Dûf(v) = ∇f(v) · û,

where ∇f(v) is the gradient of f at v.

Proof: Suppose that f is differentiable at v ∈ U . Then,

f(v + w) = f(v) +Df(v)w + E(w),

where
Df(v)w = ∇f(v) · w,

and

lim
‖w‖→0

|E(w)|
‖w‖

= 0.

Thus, for any t ∈ R,

f(v + tû) = f(v) + t∇f(v) · û+ E(tû),



Math 67. Rumbos Fall 2019 4

where

lim
|t|→0

|E(tû)|
|t|

= 0,

since ‖tû‖ = |t|‖û‖ = |t|.
We then have that, for t 6= 0,

f(v + tû)− f(v)

t
−∇f(v) · û =

E(tû)

t
,

and consequently∣∣∣∣f(v + tû)− f(v)

t
−∇f(v) · û

∣∣∣∣ =
|E(tû)|
|t|

,

from which we get that

lim
t→0

∣∣∣∣f(v + tû)− f(v)

t
−∇f(v) · û

∣∣∣∣ = 0.

This proves that

lim
t→0

f(v + tû)− f(v)

t
= ∇f(v) · û;

so that, the directional derivative of f in the direction of û at v exists, and
Dûf(v) = ∇f(v) · û.

(b) Suppose that f : U → R is differentiable at v ∈ U . Prove that if Dûf(v) =
0 for every unit vector û in Rn, then ∇f(v) must be the zero vector.

Proof: Suppose, by way of contradiction, that ∇f(v) 6= 0, and put

û =
1

‖∇f(v)‖
∇f(v).

Then, û is a unit vector, and therefore, by the assumption,

Dûf(v) = 0,

or
∇f(v) · û = 0.

But this implies that

∇f(v) · 1

‖∇f(v)‖
∇f(v) = 0,
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where

∇f(v) · 1

‖∇f(v)‖
∇f(v) =

1

‖∇f(v)‖
∇f(v) · ∇f(v)

=
1

‖∇f(v)‖
‖∇f(v)‖2

= ‖∇f(v)‖.

It then follows that ‖∇f(v)‖ = 0, which contradicts the assumption that
∇f(v) 6= 0. Therefore, ∇f(v) must be the zero vector.

(c) Suppose that f : U → R is differentiable at v ∈ U . Use the Cauchy–
Schwarz inequality to show that the largest value of Dûf(v) is ‖∇f(v)‖
and it occurs when û is in the direction of ∇f(v).

Proof. If f is differentiable at x, then Dûf(x) = ∇f(x) · û, as was shown
in part (a). Thus, by the Cauchy–Schwarz inequality,

|Dûf(x)| 6 ‖∇f(x)‖‖û‖ = ‖∇f(x)‖,

since û is a unit vector. Hence,

−‖∇f(x)‖ 6 Dûf(x) 6 ‖∇f(x)‖

for any unit vector û, and so the largest value that Dûf(x) can have is
‖∇f(x)‖.

If ∇f(x) 6= 0, then û =
1

‖∇f(x)‖
∇f(x) is a unit vector, and

Dûf(x) = ∇f(x) · û

= ∇f(x) · 1

‖∇f(x)‖
∇f(x)

=
1

‖∇f(x)‖
∇f(x) · ∇f(x)

=
1

‖∇f(x)‖
‖∇f(x)‖2

= ‖∇f(x)‖.

Thus, Dûf(x) attains its largest value when û is in the direction of ∇f(x).
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4. Let U denote an open and convex subset of Rn. Suppose that f : U → R is
differentiable at every u ∈ U . Fix u and v in U , and define g : [0, 1]→ R by

g(t) = f(u+ t(v − u)) for 0 6 t 6 1.

(a) Explain why the function g is well defined.

Answer: Since U is convex, for any u, v ∈ U , u + t(v − u) ∈ U
for all t ∈ [0, 1]. Thus, f(u+ t(v − u)) is defined for all t ∈ [0, 1],
because f is defined on U . �

(b) Show that g is differentiable on (0, 1) and that

g′(t) = ∇f(u+ t(v − u)) · (v − u) for 0 < t < 1.

Solution: It follows from the chain rule that the composition g = f ◦
σ : [0, 1]→ R, where σ : [0, 1]→ Rn is the path given by

σ(t) = u+ t(v − u), for all t ∈ [0, 1],

is differentiable in (0, 1) and

g′(t) = ∇f(σ(t)) · σ′(t), for all t ∈ (0, 1),

where
σ(t) = v − u, for all t.

Consequently, we get that

g′(t) = ∇f(u+ t(v − u)) · (v − u) for 0 < t < 1.

�

(c) Use the mean value theorem for derivatives to show that there exists a
point z is the line segment connecting u to v such that

f(v)− f(u) = Dŵf(z)‖v − u‖, (5)

where ŵ is the unit vector in the direction of the vector v − u; that is,

ŵ =
1

‖v − u‖
(v − u).

Solution: The mean value theorem implies that there exists τ ∈ (0, 1)
such that

g(1)− g(0) = g′(τ)(1− 0),
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so that
f(v)− f(u) = ∇f(u+ τ(v − u)) · (v − u). (6)

Put z = u+ τ(v − u) and ŵ =
1

‖v − u‖
(v − u). We can then write (6) as

f(v)− f(u) =

(
∇f(z) · 1

‖v − u‖
(v − u)

)
‖v − u‖

= (∇f(z) · ŵ) ‖v − u‖,

which yields (5). �

(d) Prove that if U is an open and convex subset of Rn, and f : U → R is
differentiable on U with ∇f(v) = 0 for all v ∈ U , then f must be a
constant function.

Solution: Fix uo ∈ U . Then, for any u ∈ U , the formula in (5) yields

f(u)− f(uo) = Dŵf(z)‖u− uo‖, (7)

where Dŵf(z) = ∇f(z) · ŵ = 0 by the assumption. Hence, it follows from
(7) that

f(u) = f(uo), for all u ∈ U ;

in other words, f is constant in U . �

5. Let U be an open subset of Rn and I be an open interval. Suppose that f : U →
R is a differentiable scalar field and σ : I → Rn be a differentiable path whose
image lies in U . Suppose also that σ′(t) is never the zero vector. Show that if f
has a local maximum or a local minimum at some point on the path, then ∇f
is perpendicular to the path at that point.

Suggestion: Consider the real valued function of a single variable g(t) = f(σ(t))
for all t ∈ I.

Solution: If f has a local maximum or minimum at σ(to), then g′(to) = 0,
where, by the chain rule,

g′(t) = ∇f(σ(t)) · σ′(t) for all t ∈ I.

It then follows that
∇f(σ(to)) · σ′(to) = 0,

and, consequently, ∇f(σ(to) is perpendicular to the tangent to the path at σ(to).
�
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6. Let C denote the boundary of the oriented triangle, T = [(0, 0)(1, 0)(1, 2)], in

R2. Evaluate the line integral

∫
C

x2

2
dy− y

2

2
dx, by applying the Fundamental

Theorem of Calculus.

Solution: Apply the Fundamental Theorem of Calculus to the 1–form

ω = −y
2

2
dx+

x2

2
dy

over the oriented triangle T ; namely,∫
∂T

ω =

∫
T

dω,

where
dω = (x+ y) dx ∧ dy.

Thus, since T is positively oriented, it follows that∫
∂T

ω =

∫∫
T

(x+ y) dxdy

=

∫ 1

0

∫ 2x

0

(x+ y) dydx

=

∫ 1

0

[
xy +

y2

2

]2x
0

dx

=

∫ 1

0

4x2dx,

so that ∫
C

x2

2
dy − y2

2
dx =

4

3
.

�

7. Let F (x, y) = 2x î − y ĵ and R be the square in the xy–plane with vertices

(0, 0), (2,−1), (3, 1) and (1, 2). Evaluate

∮
∂R

F · n ds.

Solution: Apply the Fundamental Theorem of Calculus,∮
∂R

F · n̂ ds =

∫
R

dω,
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Figure 1: Sketch of Region R in Problem 7

where
ω = P dy −Q dx = 2x dy − (−y) dx = y dx+ 2x dy,

so that
dω = dy ∧ dx+ 2dx ∧ dy = dx ∧ dy,

we obtain that ∮
∂R

F · dn =

∫
R

dx ∧ dy

=

∫∫
R

dxdy

= area(R).

To find the area of the region R, shown in Figure 1, observe that R is a paral-
lelogram determined by the vectors v = 2 î− ĵ and w = î+ 2 ĵ. Thus,

area(R) = ‖v × w‖ = 5.

It the follows that ∮
∂R

F · n ds =

∫∫
R

dx dy = 5.

�

8. Evaluate the line integral

∫
∂R

(x4 + y) dx + (2x − y4) dy, where R is the

rectangular region

R = {(x, y) ∈ R2 | −1 6 x 6 3, −2 6 y 6 1},
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and ∂R is traversed in the counterclockwise sense.

Solution: Apply the Fundamental Theorem of Calculus to get∫
∂R

(x4 + y) dx+ (2x− y4) dy =

∫
R

d(x4 + y) ∧ dx+ d(2x− y4) ∧ dy

=

∫
R

dy ∧ dx+ 2dx ∧ dy

=

∫
R

dx ∧ dy

= area(R)

= 12.

�

9. Integrate the function given by f(x, y) = xy2 over the region, R, defined by:

R = {(x, y) ∈ R2 | x > 0, 0 6 y 6 4− x2}.

Solution: The region, R, is sketched in Figure 2. We evaluate the double

x

y

R

y = 4− x2

Figure 2: Sketch of Region R in Problem 11
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integral,

∫∫
R

xy2 dx dy, as an iterated integral

∫∫
R

xy2 dx dy =

∫ 2

0

∫ 4−x2

0

xy2 dy dx

=

∫ 2

0

∫ 4−x2

0

xy2 dy dx

=

∫ 2

0

xy3

3

∣∣∣4−x2
0

dx

=
1

3

∫ 2

0

x(4− x2)3 dx.

To evaluate the last integral, make the change of variables: u = 4 − x2. We
then have that du = −2x dx and∫∫

R

xy2 dx dy =

∫ 2

0

∫ 4−x2

0

xy2 dy dx

= −1

6

∫ 0

4

u3 du

=
1

6

∫ 4

0

u3 du.

Thus, ∫∫
R

xy2 dx dy =
44

24
=

32

3
.

�

10. Let R denote the region in the plane defined by inside of the ellipse

x2

a2
+
y2

b2
= 1, (8)

for a > 0 and b > 0.

(a) Evaluate the line integral

∮
∂R

x dy − y dx, where ∂R is the ellipse in (8)

traversed in the positive sense.
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Figure 3: Sketch of ellipse

Solution: A sketch of the ellipse is shown in Figure 3 for the case a < b.

A parametrization of the ellipse is given by

x = a cos t, y = b sin t, for 0 6 t 6 2π.

We then have that dx = −a sin t dt and dy = b cos t dt. Therefore∮
∂R

x dy − y dx =

∫ 2π

0

[a cos t · b cos t− b sin t · (−a cos t)] dt

=

∫ 2π

0

[ab cos2 t+ ab sin2 t] dt

= ab

∫ 2π

0

(cos2 t+ ab sin2 t) dt

= ab

∫ 2π

0

dt

= 2πab.

�

(b) Use your result from part (a) and the Fundamental Theorem of Calculus
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to come up with a formula for computing the area of the region enclosed
by the ellipse in (8).

Solution: Let F (x, y) = x î+ y ĵ. Then,∮
∂R

x dy − y dx =

∮
∂R

F · n ds.

Thus, by Green’s Theorem in divergence form,∮
∂R

x dy − y dx =

∫∫
R

divF dx dy,

where

divF (x, y) =
∂

∂x
(x) +

∂

∂y
(y) = 2.

Consequently, ∮
∂R

x dy − y dx = 2

∫∫
R

dx dy = 2 area(R).

It then follows that

area(R) =
1

2

∮
∂R

x dy − y dx.

Thus,
area(R) = πab,

by the result in part (a). �

11. Evaluate the double integral

∫
R

e−x
2

dx dy, where R is the region in the xy–

plane sketched in Figure 4.

Solution: Compute∫∫
R

e−x
2

dx dy =

∫ 2

0

∫ 2x

0

e−x
2

dy dx

=

∫ 2

0

2xe−x
2

dx

=
[
−e−x2

]2
0

= 1− e−4.

�
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Figure 4: Sketch of Region R in Problem 11


