Review Problems for Exam 1

1. Compute the (shortest) distance from the point P(4,0,-7) in \mathbb{R}^3 to the plane given by

$$4x - y - 3z = 12$$
.

2. Compute the (shortest) distance from the point P(4,0,-7) in \mathbb{R}^3 to the line given by the parametric equations

$$\begin{cases} x = -1 + 4t, \\ y = -7t, \\ z = 2 - t. \end{cases}$$

- 3. Compute the area of the triangle whose vertices in \mathbb{R}^3 are the points (1,1,0), (2,0,1) and (0,3,1)
- 4. Let v and w be two vectors in \mathbb{R}^3 , and let λ be a scalar. Show that the area of the parallelogram determined by the vectors v and $w + \lambda v$ is the same as that determined by v and w.
- 5. Let \widehat{u} denote a unit vector in \mathbb{R}^n and $P_{\widehat{u}}(v)$ denote the orthogonal projection of v along the direction of \widehat{u} for any vector $v \in \mathbb{R}^n$. Use the Cauchy–Schwarz inequality to prove that the map

$$v \mapsto P_{\widehat{u}}(v)$$
 for all $v \in \mathbb{R}^n$

is a continuous map from \mathbb{R}^n to \mathbb{R}^n .

- 6. Define the scalar field $f: \mathbb{R}^n \to \mathbb{R}$ by $f(v) = \frac{1}{2} ||v||^2$ for all $v \in \mathbb{R}^n$. Show that f is differentiable on \mathbb{R}^n and compute the linear map $Df(u): \mathbb{R}^n \to \mathbb{R}$ for all $u \in \mathbb{R}^n$. What is the gradient of f at u for all $x \in \mathbb{R}^n$?
- 7. Let $g: [0, \infty) \to \mathbb{R}$ be a differentiable, real-valued function of a single variable, and let f(x, y) = g(r) where $r = \sqrt{x^2 + y^2}$.
 - (a) Compute $\frac{\partial r}{\partial x}$ in terms of x and r, and $\frac{\partial r}{\partial y}$ in terms of y and r.
 - (b) Compute ∇f in terms of g'(r), r and the vector $\mathbf{r} = x\hat{i} + y\hat{j}$.

8. Let $f: U \to \mathbb{R}$ denote a scalar field defined on an open subset U of \mathbb{R}^n , and let \widehat{u} be a unit vector in \mathbb{R}^n . If the limit

$$\lim_{t \to 0} \frac{f(v + t\widehat{u}) - f(v)}{t}$$

exists, we call it the directional derivative of f at v in the direction of the unit vector \hat{u} . We denote it by $D_{\hat{u}}f(v)$.

(a) Show that if f is differentiable at $v \in U$, then, for any unit vector \widehat{u} in \mathbb{R}^n , the directional derivative of f in the direction of \widehat{u} at v exists, and

$$D_{\widehat{u}}f(v) = \nabla f(v) \cdot \widehat{u},$$

where $\nabla f(v)$ is the gradient of f at v.

- (b) Suppose that $f: U \to \mathbb{R}$ is differentiable at $v \in U$. Prove that if $D_{\widehat{u}}f(v) = 0$ for every unit vector \widehat{u} in \mathbb{R}^n , then $\nabla f(v)$ must be the zero vector.
- (c) Suppose that $f: U \to \mathbb{R}$ is differentiable at $v \in U$. Use the Cauchy–Schwarz inequality to show that the largest value of $D_{\widehat{u}}f(v)$ is $\|\nabla f(v)\|$ and it occurs when \widehat{u} is in the direction of $\nabla f(v)$.
- 9. The scalar field $f: U \to \mathbb{R}$ is said to have a *local minimum* at $x \in U$ if there exists r > 0 such that $B_r(x) \subseteq U$ and

$$f(x) \leqslant f(y)$$
 for every $y \in B_r(x)$.

Prove that if f is differentiable at $x \in U$ and f has a local minimum at x, then $\nabla f(x) = \mathbf{0}$, the zero vector in \mathbb{R}^n .

10. Let I denote an open interval in \mathbb{R} . Suppose that $\sigma: I \to \mathbb{R}^n$ and $\gamma: I \to \mathbb{R}^n$ are paths in \mathbb{R}^n . Define a real valued function $f: I \to \mathbb{R}$ of a single variable by

$$f(t) = \sigma(t) \cdot \gamma(t)$$
 for all $t \in I$;

that is, f(t) is the dot product of the two paths at t.

Show that if σ and γ are both differentiable on I, then so is f, and

$$f'(t) = \sigma'(t) \cdot \gamma(t) + \sigma(t) \cdot \gamma'(t)$$
 for all $t \in I$.

11. Let $\sigma: I \to \mathbb{R}^n$ denote a differentiable path in \mathbb{R}^n . Show that if $\|\sigma(t)\|$ is constant for all $t \in I$, then $\sigma'(t)$ is orthogonal to $\sigma(t)$ for all $t \in I$.

12. A particle is following a path in three-dimensional space given by

$$\sigma(t) = (e^t, e^{-t}, 1 - t)$$
 for $t \in \mathbb{R}$.

At time $t_o = 1$, the particle flies off on a tangent.

- (a) Where will the particle be at time $t_1 = 2$?
- (b) Will the particle ever hit the xy-plane? Is so, find the location on the xy plane where the particle hits.
- 13. Let U denote an open and convex subset of \mathbb{R}^n . Suppose that $f: U \to \mathbb{R}$ is differentiable at every $x \in U$. Fix x and y in U, and define $g: [0,1] \to \mathbb{R}$ by

$$g(t) = f(x + t(y - x))$$
 for $0 \le t \le 1$.

- (a) Explain why the function g is well defined.
- (b) Show that g is differentiable on (0,1) and that

$$g'(t) = \nabla f(x + t(y - x)) \cdot (y - x) \quad \text{for } 0 < t < 1.$$

(Suggestion: Consider

$$\frac{g(t+h) - g(t)}{h} = \frac{f(x + t(y-x) + h(y-x)) - f(x + t(y-x))}{h}$$

and apply the definition of differentiability of f at the point x + t(y - x).)

(c) Use the Mean Value Theorem for derivatives to show that there exists a point z is the line segment connecting x to y such that

$$f(y) - f(x) = D_{\widehat{u}}f(z)||y - x||,$$

where \hat{u} is the unit vector in the direction of the vector y-x; that is, $\hat{u} = \frac{1}{\|y-x\|}(y-x)$.

(Hint: Observe that g(1) - g(0) = f(y) - f(x).)

14. Prove that if U is an open and convex subset of \mathbb{R}^n , and $f: U \to \mathbb{R}$ is differentiable on U with $\nabla f(v) = \mathbf{0}$ for all $v \in U$, then f must be a constant function.