Solutions to Review Problems for Exam 1

1. Compute the (shortest) distance from the point P(4,0,-7) in \mathbb{R}^3 to the plane given by

$$4x - y - 3z = 12$$
.

Solution: The point $P_o(3,0,0)$ is in the plane. Let

$$w = \overrightarrow{P_oP} = \begin{pmatrix} 1\\0\\-7 \end{pmatrix}$$

The vector $n = \begin{pmatrix} 4 \\ -1 \\ -3 \end{pmatrix}$ is orthogonal to the plane. To find the shortest distance, d, from P to the plane, we compute the norm of the orthogonal projection of w onto n; that is,

$$d = \|\operatorname{Proj}_{\widehat{n}}(w)\|,$$

where

$$\widehat{n} = \frac{1}{\sqrt{26}} \begin{pmatrix} 4 \\ -1 \\ -3 \end{pmatrix},$$

a unit vector in the direction of n, and

$$\operatorname{Proj}_{\widehat{n}}(w) = (w \cdot \widehat{n})\widehat{n}.$$

It then follows that

$$d = |w \cdot \widehat{n}|,$$

where
$$w \cdot \hat{n} = \frac{1}{\sqrt{26}}(4+21) = \frac{25}{\sqrt{26}}$$
. Hence, $d = \frac{25\sqrt{26}}{26} \approx 4.9$.

2. Compute the (shortest) distance from the point P(4,0,-7) in \mathbb{R}^3 to the line given by the parametric equations

$$\begin{cases} x = -1 + 4t, \\ y = -7t, \\ z = 2 - t. \end{cases}$$

Solution: The point $P_o(-1,0,2)$ is on the line. The vector

$$v = \begin{pmatrix} 4 \\ -7 \\ -1 \end{pmatrix}$$

gives the direction of the line. Put

$$w = \overrightarrow{P_oP} = \begin{pmatrix} 5\\0\\-9 \end{pmatrix}.$$

The vectors v and w determine a parallelogram whose area is the norm of v times the shortest distance, d, from P to the line determined by v at P_o . We then have that

$$area(P(v,w)) = ||v||d,$$

from which we get that

$$d = \frac{\operatorname{area}(P(v, w))}{\|v\|}.$$

On the other hand,

$$\operatorname{area}(P(v,w)) = \|v \times w\|,$$

where

$$v \times w = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 4 & -7 & -1 \\ 5 & 0 & -9 \end{vmatrix} = 63\hat{i} + 31\hat{j} - 35\hat{k}.$$

Thus, $||v \times w|| = \sqrt{(63)^2 + (31)^2 + (35)^2} = \sqrt{6155}$ and therefore

$$d = \frac{\sqrt{6155}}{\sqrt{66}} \approx 9.7.$$

3. Compute the area of the triangle whose vertices in \mathbb{R}^3 are the points (1,1,0), (2,0,1) and (0,3,1)

Solution: Label the points $P_o(1,1,0)$, $P_1(2,0,1)$ and $P_2(0,3,1)$ and define the vectors

$$v = \overrightarrow{P_oP_1} = \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}$$
 and $w = \overrightarrow{P_oP_2} = \begin{pmatrix} -1 \\ 2 \\ 1 \end{pmatrix}$.

The area of the triangle determined by the points P_o , P_1 and P_2 is then half of the area of the parallelogram determined by the vectors v and w. Thus,

$$\operatorname{area}(\triangle P_o P_1 P_2) = \frac{1}{2} \|v \times w\|,$$

where

$$v \times w = \begin{vmatrix} \widehat{i} & \widehat{j} & \widehat{k} \\ 1 & -1 & 1 \\ -1 & 2 & 1 \end{vmatrix} = -3\widehat{i} - 2\widehat{j} + \widehat{k}.$$

Consequently, area
$$(\triangle P_o P_1 P_2) = \frac{1}{2} \sqrt{9+4+1} = \frac{\sqrt{14}}{2} \approx 1.87.$$

4. Let v and w be two vectors in \mathbb{R}^3 , and let λ be a scalar. Show that the area of the parallelogram determined by the vectors v and $w + \lambda v$ is the same as that determined by v and w.

Solution: The area of the parallelogram determined by v and $w + \lambda v$ is

$$area(P(v, w + \lambda v)) = ||v \times (w + \lambda v)||,$$

where

$$v \times (w + \lambda v) = v \times w + \lambda v \times v = v \times w.$$

Consequently, area
$$(P(v, w + \lambda v)) = ||v \times w|| = \text{area}(P(v, w)).$$

5. Let \widehat{u} denote a unit vector in \mathbb{R}^n and $P_{\widehat{u}}(v)$ denote the orthogonal projection of v along the direction of \widehat{u} for any vector $v \in \mathbb{R}^n$. Use the Cauchy–Schwarz inequality to prove that the map

$$v \mapsto P_{\widehat{u}}(v)$$
 for all $v \in \mathbb{R}^n$

is a continuous map from \mathbb{R}^n to \mathbb{R}^n .

Solution: $P_{\widehat{u}}(v) = (v \cdot \widehat{u})\widehat{u}$ for all $v \in \mathbb{R}^n$. Consequently, for any $w, v \in \mathbb{R}^n$,

$$\begin{array}{rcl} P_{\widehat{u}}(w) - P_{\widehat{u}}(v) & = & (w \cdot \widehat{u})\widehat{u} - (v \cdot \widehat{u})\widehat{u} \\ & = & (w \cdot \widehat{u} - v \cdot \widehat{u})\widehat{u} \\ & = & [(w - v) \cdot \widehat{u}]\widehat{u}. \end{array}$$

It then follows that

$$||P_{\widehat{u}}(w) - P_{\widehat{u}}(v)|| = |(w - v) \cdot \widehat{u}|,$$

since $\|\widehat{u}\| = 1$. Hence, by the Cauchy–Schwarz inequality,

$$||P_{\widehat{u}}(w) - P_{\widehat{u}}(v)|| \le ||w - v||.$$

Applying the Squeeze Theorem we then get that

$$\lim_{\|w-v\|\to 0} \|P_{\widehat{u}}(w) - P_{\widehat{u}}(v)\| = 0,$$

which shows that $P_{\widehat{u}}$ is continuous at every $v \in V$.

6. Define the scalar field $f: \mathbb{R}^n \to \mathbb{R}$ by $f(v) = \frac{1}{2} ||v||^2$ for all $v \in \mathbb{R}^n$. Show that f is differentiable on \mathbb{R}^n and compute the linear map $Df(u): \mathbb{R}^n \to \mathbb{R}$ for all $u \in \mathbb{R}^n$. What is the gradient of f at u for all $x \in \mathbb{R}^n$?

Solution: Let u and w be any vector in \mathbb{R}^n and consider

$$f(u+w) = \frac{1}{2} \|u+w\|^2$$

$$= \frac{1}{2} (u+w) \cdot (u+w)$$

$$= \frac{1}{2} u \cdot u + u \cdot w + \frac{1}{2} w \cdot w$$

$$= \frac{1}{2} \|u\|^2 + u \cdot w + \frac{1}{2} \|w\|^2.$$

Thus,

$$f(u+w) - f(u) - u \cdot w = \frac{1}{2} ||w||^2.$$

Consequently,

$$\frac{|f(u+w) - f(u) - u \cdot w|}{\|w\|} = \frac{1}{2} \|w\|,$$

from which we get that

$$\lim_{\|w\| \to 0} \frac{|f(u+w) - f(u) - u \cdot w|}{\|w\|} = 0,$$

and therefore f is differentiable at u with derivative map Df(u) given by

$$Df(u)w = u \cdot w$$
 for all $w \in \mathbb{R}^n$.

Hence, $\nabla f(u) = u$ for all $u \in \mathbb{R}^n$.

- 7. Let $g: [0, \infty) \to \mathbb{R}$ be a differentiable, real-valued function of a single variable, and let f(x, y) = g(r) where $r = \sqrt{x^2 + y^2}$.
 - (a) Compute $\frac{\partial r}{\partial x}$ in terms of x and r, and $\frac{\partial r}{\partial y}$ in terms of y and r.

Solution: Take the partial derivative of $r^2 = x^2 + y^2$ on both sides with respect to x to obtain

$$\frac{\partial(r^2)}{\partial x} = 2x.$$

Applying the chain rule on the left-hand side we get

$$2r\frac{\partial r}{\partial x} = 2x,$$

which leads to

$$\frac{\partial r}{\partial x} = \frac{x}{r}.$$

Similarly,
$$\frac{\partial r}{\partial y} = \frac{y}{r}$$
.

(b) Compute ∇f in terms of g'(r), r and the vector $\mathbf{r} = x\hat{i} + y\hat{j}$.

Solution: Take the partial derivative of f(x,y) = g(r) on both sides with respect to x and apply the Chain Rule to obtain

$$\frac{\partial f}{\partial x} = g'(r) \frac{\partial r}{\partial x} = g'(r) \frac{x}{r}.$$

Similarly,
$$\frac{\partial f}{\partial y} = g'(r) \frac{y}{r}$$
. It then follows that

$$\nabla f = \frac{\partial f}{\partial x}\hat{i} + \frac{\partial f}{\partial y}\hat{j}$$

$$= g'(r)\frac{x}{r}\hat{i} + g'(r)\frac{y}{r}\hat{j}$$

$$= \frac{g'(r)}{r}(x\hat{i} + y\hat{j})$$

$$= \frac{g'(r)}{r}\mathbf{r}.$$

8. Let $f: U \to \mathbb{R}$ denote a scalar field defined on an open subset U of \mathbb{R}^n , and let \widehat{u} be a unit vector in \mathbb{R}^n . If the limit

$$\lim_{t \to 0} \frac{f(v + t\widehat{u}) - f(v)}{t}$$

exists, we call it the directional derivative of f at v in the direction of the unit vector \hat{u} . We denote it by $D_{\hat{u}}f(v)$.

(a) Show that if f is differentiable at $v \in U$, then, for any unit vector \widehat{u} in \mathbb{R}^n , the directional derivative of f in the direction of \widehat{u} at v exists, and

$$D_{\widehat{u}}f(v) = \nabla f(v) \cdot \widehat{u},$$

where $\nabla f(v)$ is the gradient of f at v.

Proof: Suppose that f is differentiable at $v \in U$. Then,

$$f(v+w) = f(v) + Df(v)w + E(w),$$

where

$$Df(v)w = \nabla f(v) \cdot w,$$

and

$$\lim_{\|w\| \to 0} \frac{|E(w)|}{\|w\|} = 0.$$

Thus, for any $t \in \mathbb{R}$,

$$f(v + t\widehat{u}) = f(v) + t\nabla f(v) \cdot \widehat{u} + E(t\widehat{u}),$$

where

$$\lim_{|t|\to 0}\frac{|E(t\widehat{u})|}{|t|}=0,$$

since $||t\widehat{u}|| = |t|||\widehat{u}|| = |t|$.

We then have that, for $t \neq 0$,

$$\frac{f(v+t\widehat{u}) - f(v)}{t} - \nabla f(v) \cdot \widehat{u} = \frac{E(t\widehat{u})}{t},$$

and consequently

$$\left| \frac{f(v + t\widehat{u}) - f(v)}{t} - \nabla f(v) \cdot \widehat{u} \right| = \frac{|E(t\widehat{u})|}{|t|},$$

from which we get that

$$\lim_{t \to 0} \left| \frac{f(v + t\widehat{u}) - f(v)}{t} - \nabla f(v) \cdot \widehat{u} \right| = 0.$$

(b) Suppose that $f: U \to \mathbb{R}$ is differentiable at $v \in U$. Prove that if $D_{\widehat{u}}f(v) = 0$ for every unit vector \widehat{u} in \mathbb{R}^n , then $\nabla f(v)$ must be the zero vector.

Proof: Suppose, by way of contradiction, that $\nabla f(v) \neq \mathbf{0}$, and put

$$\widehat{u} = \frac{1}{\|\nabla f(v)\|} \nabla f(v).$$

Then, \hat{u} is a unit vector, and therefore, by the assumption,

$$D_{\widehat{u}}f(v) = 0,$$

or

$$\nabla f(v) \cdot \widehat{u} = 0.$$

But this implies that

$$\nabla f(v) \cdot \frac{1}{\|\nabla f(v)\|} \nabla f(v) = 0,$$

where

$$\nabla f(v) \cdot \frac{1}{\|\nabla f(v)\|} \nabla f(v) = \frac{1}{\|\nabla f(v)\|} \nabla f(v) \cdot \nabla f(v)$$
$$= \frac{1}{\|\nabla f(v)\|} \|\nabla f(v)\|^2$$
$$= \|\nabla f(v)\|.$$

It then follows that $\|\nabla f(v)\| = 0$, which contradicts the assumption that $\nabla f(v) \neq \mathbf{0}$. Therefore, $\nabla f(v)$ must be the zero vector.

(c) Suppose that $f: U \to \mathbb{R}$ is differentiable at $v \in U$. Use the Cauchy–Schwarz inequality to show that the largest value of $D_{\widehat{u}}f(v)$ is $\|\nabla f(v)\|$ and it occurs when \widehat{u} is in the direction of $\nabla f(v)$.

Proof. If f is differentiable at x, then $D_{\widehat{u}}f(x) = \nabla f(x) \cdot \widehat{u}$, as was shown in part (a). Thus, by the Cauchy–Schwarz inequality,

$$|D_{\widehat{u}}f(x)| \leq ||\nabla f(x)|| ||\widehat{u}|| = ||\nabla f(x)||,$$

since \widehat{u} is a unit vector. Hence,

$$-\|\nabla f(x)\| \leqslant D_{\widehat{u}}f(x) \leqslant \|\nabla f(x)\|$$

for any unit vector \widehat{u} , and so the largest value that $D_{\widehat{u}}f(x)$ can have is $\|\nabla f(x)\|$.

If $\nabla f(x) \neq \mathbf{0}$, then $\widehat{u} = \frac{1}{\|\nabla f(x)\|} \nabla f(x)$ is a unit vector, and

$$D_{\widehat{u}}f(x) = \nabla f(x) \cdot \widehat{u}$$

$$= \nabla f(x) \cdot \frac{1}{\|\nabla f(x)\|} \nabla f(x)$$

$$= \frac{1}{\|\nabla f(x)\|} \nabla f(x) \cdot \nabla f(x)$$

$$= \frac{1}{\|\nabla f(x)\|} \|\nabla f(x)\|^2$$

$$= \|\nabla f(x)\|.$$

Thus, $D_{\widehat{u}}f(x)$ attains its largest value when \widehat{u} is in the direction of $\nabla f(x)$.

9. The scalar field $f: U \to \mathbb{R}$ is said to have a *local minimum* at $x \in U$ if there exists r > 0 such that $B_r(x) \subseteq U$ and

$$f(x) \leqslant f(y)$$
 for every $y \in B_r(x)$.

Prove that if f is differentiable at $x \in U$ and f has a local minimum at x, then $\nabla f(x) = \mathbf{0}$, the zero vector in \mathbb{R}^n .

Proof. Let \widehat{u} be a unit vector and $t \in \mathbb{R}$ be such that |t| < r; then,

$$f(x+t\widehat{u}) \geqslant f(x),$$

from which we get that

$$f(x+t\widehat{u}) - f(x) \geqslant 0.$$

Dividing by t > 0 we then have that

$$\frac{f(x+t\widehat{u})-f(x)}{t}\geqslant 0.$$

Thus, letting $t \to 0^+$, we get that

$$D_{\widehat{u}}f(x) \geqslant 0, \tag{1}$$

since f is differentiable at x. Similarly, dividing by t < 0, we have

$$\frac{f(x+t\widehat{u}) - f(x)}{t} \leqslant 0,$$

from which we obtain, letting $t \to 0^-$, that

$$D_{\widehat{u}}f(x) \leqslant 0. \tag{2}$$

Combining (1) and (2) we then have that

$$D_{\widehat{u}}f(x)=0,$$

where \widehat{u} is an arbitrary unit vector. It then follows from the previous problem that $\nabla f(x) = \mathbf{0}$.

10. Let I denote an open interval in \mathbb{R} . Suppose that $\sigma: I \to \mathbb{R}^n$ and $\gamma: I \to \mathbb{R}^n$ are paths in \mathbb{R}^n . Define a real valued function $f: I \to \mathbb{R}$ of a single variable by

$$f(t) = \sigma(t) \cdot \gamma(t)$$
 for all $t \in I$;

that is, f(t) is the dot product of the two paths at t.

Show that if σ and γ are both differentiable on I, then so is f, and

$$f'(t) = \sigma'(t) \cdot \gamma(t) + \sigma(t) \cdot \gamma'(t)$$
 for all $t \in I$.

Solution: Let $t \in I$ and assume that both σ and γ are differentiable at t. Then,

$$\sigma(t+h) = \sigma(t) + h\sigma'(t) + E_1(h)$$
, for $|h|$ sufficiently small,

where

$$\lim_{h \to 0} \frac{\|E_1(h)\|}{|h|} = 0. \tag{3}$$

Similarly,

$$\gamma(t+h) = \gamma(t) + h\gamma'(t) + E_2(h)$$
, for $|h|$ sufficiently small,

where

$$\lim_{h \to 0} \frac{\|E_2(h)\|}{|h|} = 0. \tag{4}$$

It then follows that, for |h| sufficiently small,

$$f(t+h) = \sigma(t+h) \cdot \gamma(t+h)$$

$$= (\sigma(t) + h\sigma'(t) + E_1(h)) \cdot (\gamma(t) + h\gamma'(t) + E_2(h))$$

$$= \sigma(t) \cdot \gamma(t) + h\sigma(t) \cdot \gamma'(t) + \sigma(t) \cdot E_2(h)) + h\sigma'(t) \cdot \gamma(t) + h^2\sigma'(t) \cdot \gamma'(t) + h\sigma'(t) \cdot E_2(h) + E_1(h) \cdot \gamma(t) + hE_1(h) \cdot \gamma'(t) + E_1(h) \cdot E_2(h)$$

$$= f(t) + h[\sigma(t) \cdot \gamma'(t) + \sigma'(t) \cdot \gamma(t)] + h^2\sigma'(t) \cdot \gamma'(t) + \sigma(t) \cdot E_2(h) + h\sigma'(t) \cdot E_2(h) + E_1(h) \cdot \gamma(t) + hE_1(h) \cdot \gamma'(t) + E_1(h) \cdot E_2(h)$$

Rearranging terms and dividing by $h \neq 0$ and |h| small enough, we then have that

$$\frac{f(t+h) - f(t)}{h} = \sigma(t) \cdot \gamma'(t) + \sigma'(t) \cdot \gamma(t) + h\sigma'(t) \cdot \gamma'(t)
+ \sigma(t) \cdot \frac{E_2(h)}{h} + \sigma'(t) \cdot E_2(h) + \frac{E_1(h)}{h} \cdot \gamma(t)
+ E_1(h) \cdot \gamma'(t) + E_1(h) \cdot \frac{E_2(h)}{h}$$

Observe that, as $h \to 0$, all the terms on the right hand side of the previous expression which involve E_1 or E_2 go to 0, by virtue of the

Cauchy–Schwarz inequality and (3) and (4). Therefore, we obtain that

$$\lim_{h \to 0} \frac{f(t+h) - f(t)}{h} = \sigma(t) \cdot \gamma'(t) + \sigma'(t) \cdot \gamma(t).$$

Hence, f is differentiable at t, and its derivative at t is

$$f'(t) = \sigma(t) \cdot \gamma'(t) + \sigma'(t) \cdot \gamma(t).$$

Since t is an arbitrary element of I, the result follows. \square

11. Let $\sigma: I \to \mathbb{R}^n$ denote a differentiable path in \mathbb{R}^n . Show that if $\|\sigma(t)\|$ is constant for all $t \in I$, then $\sigma'(t)$ is orthogonal to $\sigma(t)$ for all $t \in I$.

Solution: Let $\|\sigma(t)\| = c$, where c denotes a constant. Then,

$$\|\sigma(t)\|^2 = c^2,$$

or

$$\sigma(t) \cdot \sigma(t) = c^2.$$

Differentiating with respect to t on both sides, and using the result of the previous problem, we obtain that

$$\sigma(t) \cdot \sigma'(t) + \sigma'(t) \cdot \sigma(t) = 0,$$

or, by the symmetry of the dot-product,

$$2\sigma'(t) \cdot \sigma(t) = 0,$$

or

$$\sigma'(t) \cdot \sigma(t) = 0.$$

Hence, $\sigma'(t)$ is orthogonal to $\sigma(t)$ for all $t \in I$.

12. A particle is following a path in three-dimensional space given by

$$\sigma(t) = (e^t, e^{-t}, 1 - t)$$
 for $t \in \mathbb{R}$.

At time $t_o = 1$, the particle flies off on a tangent.

(a) Where will the particle be at time $t_1 = 2$?

Solution: Find the tangent line to the path at $\sigma(1)$:

$$\overrightarrow{r}(t) = \sigma(1) + (t-1)\sigma'(1),$$

where

$$\sigma'(t) = (e^t, -e^{-t}, -1)$$
 for $t \in \mathbb{R}$.

Then,

$$\overrightarrow{r}(t) = (e, 1/e, 0) + (t - 1)(e, -1/e, -1).$$

The parametric equations of the tangent line then are

$$\begin{cases} x = e + e(t - 1) \\ y = 1/e - (t - 1)/e \\ z = 1 - t \end{cases}$$

When t=2, the particle will be at the point in \mathbb{R}^3 with coordinates

$$(2e, 0, -1).$$

(b) Will the particle ever hit the xy-plane? Is so, find the location on the xy plane where the particle hits.

Answer: The particle leaves the path at the point with coordinates (e, 1/e, 0) on the xy-plane. After that, it doesn't come back to it.

13. Let U denote an open and convex subset of \mathbb{R}^n . Suppose that $f: U \to \mathbb{R}$ is differentiable at every $x \in U$. Fix x and y in U, and define $g: [0,1] \to \mathbb{R}$ by

$$g(t) = f(x + t(y - x))$$
 for $0 \le t \le 1$.

(a) Explain why the function g is well defined.

Solution: Since U is convex, x + t(y - x) is in U for $0 \le t \le 1$. Thus, f(x + t(y - x)) is defined for $t \in [0, 1]$.

(b) Show that q is differentiable on (0,1) and that

$$g'(t) = \nabla f(x + t(y - x)) \cdot (y - x) \quad \text{for } 0 < t < 1.$$

(Suggestion: Consider

$$\frac{g(t+h) - g(t)}{h} = \frac{f(x + t(y-x) + h(y-x)) - f(x + t(y-x))}{h}$$

and apply the definition of differentiability of f at the point x + t(y - x).)

Proof. Since f is differentiable on U, for |h| small enough,

$$f(x+t(y-x)+h(y-x)) = f(x+t(y-x)) + Df(x+t(y-x))(h(y-x)) + E(h(y-x)),$$

where

$$\lim_{\|w\| \to 0} \frac{|E(w)|}{\|w\|} = 0. \tag{5}$$

Thus,

$$f(x+t(y-x)+h(y-x)) = f(x+t(y-x))+h\nabla f(x+t(y-x))\cdot (y-x)+E((h(y-x)), y-x)+E(h(y-x))$$

from which we get that

$$\frac{g(t+h) - g(t)}{h} = \frac{f(x + t(y-x) + h(y-x)) - f(x + t(y-x))}{h}$$
$$= \nabla f(x + t(y-x)) \cdot (y-x) + \frac{E(h(y-x))}{h}$$

for $h \neq 0$.

Observe that

$$\lim_{h \to 0} \frac{|E(h(y-x))|}{h} = \lim_{h \to 0} ||y-x|| \frac{|E(h(y-x))|}{||h(y-x)||} = 0,$$

by virtue of (5). It then follows that

$$\lim_{h \to 0} \frac{g(t+h) - g(t)}{h} = \nabla f(x + t(y-x)) \cdot (y-x),$$

and therefore g is differentiable at t and $g'(t) = \nabla f(x+t(y-x)) \cdot (y-x)$.

(c) Use the Mean Value Theorem for derivatives to show that there exists a point z is the line segment connecting x to y such that

$$f(y) - f(x) = D_{\widehat{u}}f(z)||y - x||,$$

where \widehat{u} is the unit vector in the direction of the vector y-x; that is, $\widehat{u} = \frac{1}{\|y-x\|}(y-x)$.

(Hint: Observe that g(1) - g(0) = f(y) - f(x).)

Solution: Assume that $x \neq y$, for if x = y the equality certainly holds true.

By the Mean Value Theorem, there exists $\tau \in (0,1)$ such that

$$g(1) - g(0) = g'(\tau)(1 - 0) = g'(\tau).$$

It then follows that

$$f(y) - f(x) = \nabla f(x + \tau(y - x)) \cdot (y - x).$$

Put $z = x + \tau(y - x)$; then, z is a point in the line segment connecting x to y, and

$$f(y) - f(x) = \nabla f(z) \cdot (y - x)$$

$$= \nabla f(z) \cdot \frac{y - x}{\|y - x\|} \|y - x\|$$

$$= \nabla f(z) \cdot \widehat{u} \|y - x\|$$

$$= D_{\widehat{u}} f(z) \|y - x\|,$$

where
$$\widehat{u} = \frac{1}{\|y - x\|} (y - x)$$
.

14. Prove that if U is an open and convex subset of \mathbb{R}^n , and $f: U \to \mathbb{R}$ is differentiable on U with $\nabla f(v) = \mathbf{0}$ for all $v \in U$, then f must be a constant function.

Solution: Fix $x_o \in U$; then, since U is convex, for any $x \in U \setminus \{x_o\}$, the line segment connecting x_o to x is entirely contained in U. Furthermore, by the argument in part (c) of the previous problem, there exists z in the line segment connecting x_o to x such that

$$f(x) - f(x_o) = D_{\widehat{u}}f(z)||x - x_o||,$$

where $\widehat{u} = \frac{1}{\|x - x_o\|}(x - x_o)$.

Now, $D_{\widehat{u}}f(z) = \nabla f(z) \cdot \widehat{u} = 0$, since $\nabla f(x) = \mathbf{0}$ for all $x \in U$. Therefore,

$$f(x) = f(x_o).$$

Since x was arbitrary, it follows that f maps every element in U to $f(x_o)$; that is, f is a constant function.