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Solutions to Review Problems for Exam 1

1. Compute the (shortest) distance from the point P (4, 0,−7) in R3 to the plane
given by

4x− y − 3z = 12.

Solution: The point Po(3, 0, 0) is in the plane. Let

w =
−−→
PoP =

 1
0
−7



The vector n =

 4
−1
−3

 is orthogonal to the plane. To find the

shortest distance, d, from P to the plane, we compute the norm of
the orthogonal projection of w onto n; that is,

d = ‖Proj
n̂
(w)‖,

where

n̂ =
1√
26

 4
−1
−3

 ,

a unit vector in the direction of n, and

Proj
n̂
(w) = (w · n̂)n̂.

It then follows that
d = |w · n̂|,

where w · n̂ =
1√
26

(4 + 21) =
25√
26
. Hence, d =

25
√

26

26
≈ 4.9. �

2. Compute the (shortest) distance from the point P (4, 0,−7) in R3 to the line
given by the parametric equations

x = −1 + 4t,
y = −7t,
z = 2− t.
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Solution: The point Po(−1, 0, 2) is on the line. The vector

v =

 4
−7
−1


gives the direction of the line. Put

w =
−−→
PoP =

 5
0
−9

 .

The vectors v and w determine a parallelogram whose area is the norm
of v times the shortest distance, d, from P to the line determined by
v at Po. We then have that

area(P (v, w)) = ‖v‖d,

from which we get that

d =
area(P (v, w))

‖v‖
.

On the other hand,

area(P (v, w)) = ‖v × w‖,

where

v × w =

∣∣∣∣∣∣
î ĵ k̂
4 −7 −1
5 0 −9

∣∣∣∣∣∣ = 63̂i+ 31ĵ − 35k̂.

Thus, ‖v × w‖ =
√

(63)2 + (31)2 + (35)2 =
√

6155 and therefore

d =

√
6155√
66
≈ 9.7.

�

3. Compute the area of the triangle whose vertices in R3 are the points (1, 1, 0),
(2, 0, 1) and (0, 3, 1)
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Solution: Label the points Po(1, 1, 0), P1(2, 0, 1) and P2(0, 3, 1) and
define the vectors

v =
−−→
PoP1 =

 1
−1

1

 and w =
−−→
PoP2 =

−1
2
1

 .

The area of the triangle determined by the points Po, P1 and P2 is
then half of the area of the parallelogram determined by the vectors
v and w. Thus,

area(4PoP1P2) =
1

2
‖v × w‖,

where

v × w =

∣∣∣∣∣∣
î ĵ k̂
1 −1 1
−1 2 1

∣∣∣∣∣∣ = −3̂i− 2ĵ + k̂.

Consequently, area(4PoP1P2) =
1

2

√
9 + 4 + 1 =

√
14

2
≈ 1.87. �

4. Let v and w be two vectors in R3, and let λ be a scalar. Show that the area of
the parallelogram determined by the vectors v and w + λv is the same as that
determined by v and w.

Solution: The area of the parallelogram determined by v and w+λv
is

area(P (v, w + λv)) = ‖v × (w + λv)‖,

where
v × (w + λv) = v × w + λv × v = v × w.

Consequently, area(P (v, w + λv)) = ‖v × w‖ = area(P (v, w)). �

5. Let û denote a unit vector in Rn and Pû(v) denote the orthogonal projection
of v along the direction of û for any vector v ∈ Rn. Use the Cauchy–Schwarz
inequality to prove that the map

v 7→ Pû(v) for all v ∈ Rn

is a continuous map from Rn to Rn.
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Solution: Pû(v) = (v · û)û for all v ∈ Rn. Consequently, for any
w, v ∈ Rn,

Pû(w)− Pû(v) = (w · û)û− (v · û)û
= (w · û− v · û)û
= [(w − v) · û]û.

It then follows that

‖Pû(w)− Pû(v)‖ = |(w − v) · û|,

since ‖û‖ = 1. Hence, by the Cauchy–Schwarz inequality,

‖Pû(w)− Pû(v)‖ 6 ‖w − v‖.

Applying the Squeeze Theorem we then get that

lim
‖w−v‖→0

‖Pû(w)− Pû(v)‖ = 0,

which shows that Pû is continuous at every v ∈ V . �

6. Define the scalar field f : Rn → R by f(v) =
1

2
‖v‖2 for all v ∈ Rn. Show that

f is differentiable on Rn and compute the linear map Df(u) : Rn → R for all
u ∈ Rn. What is the gradient of f at u for all x ∈ Rn?

Solution: Let u and w be any vector in Rn and consider

f(u+ w) =
1

2
‖u+ w‖2

=
1

2
(u+ w) · (u+ w)

=
1

2
u · u+ u · w +

1

2
w · w

=
1

2
‖u‖2 + u · w +

1

2
‖w‖2.

Thus,

f(u+ w)− f(u)− u · w =
1

2
‖w‖2.
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Consequently,

|f(u+ w)− f(u)− u · w|
‖w‖

=
1

2
‖w‖,

from which we get that

lim
‖w‖→0

|f(u+ w)− f(u)− u · w|
‖w‖

= 0,

and therefore f is differentiable at u with derivative map Df(u) given
by

Df(u)w = u · w for all w ∈ Rn.

Hence, ∇f(u) = u for all u ∈ Rn. �

7. Let g : [0,∞)→ R be a differentiable, real–valued function of a single variable,
and let f(x, y) = g(r) where r =

√
x2 + y2.

(a) Compute
∂r

∂x
in terms of x and r, and

∂r

∂y
in terms of y and r.

Solution: Take the partial derivative of r2 = x2 + y2 on both
sides with respect to x to obtain

∂(r2)

∂x
= 2x.

Applying the chain rule on the left–hand side we get

2r
∂r

∂x
= 2x,

which leads to
∂r

∂x
=
x

r
.

Similarly,
∂r

∂y
=
y

r
. �

(b) Compute ∇f in terms of g′(r), r and the vector r = x̂i+ yĵ.

Solution: Take the partial derivative of f(x, y) = g(r) on both
sides with respect to x and apply the Chain Rule to obtain

∂f

∂x
= g′(r)

∂r

∂x
= g′(r)

x

r
.
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Similarly,
∂f

∂y
= g′(r)

y

r
.

It then follows that

∇f =
∂f

∂x
î+

∂f

∂y
ĵ

= g′(r)
x

r
î+ g′(r)

y

r
ĵ

=
g′(r)

r
(x̂i+ yĵ)

=
g′(r)

r
r.

�

8. Let f : U → R denote a scalar field defined on an open subset U of Rn, and let
û be a unit vector in Rn. If the limit

lim
t→0

f(v + tû)− f(v)

t

exists, we call it the directional derivative of f at v in the direction of the unit
vector û. We denote it by Dûf(v).

(a) Show that if f is differentiable at v ∈ U , then, for any unit vector û in Rn,
the directional derivative of f in the direction of û at v exists, and

Dûf(v) = ∇f(v) · û,

where ∇f(v) is the gradient of f at v.

Proof: Suppose that f is differentiable at v ∈ U . Then,

f(v + w) = f(v) +Df(v)w + E(w),

where
Df(v)w = ∇f(v) · w,

and

lim
‖w‖→0

|E(w)|
‖w‖

= 0.
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Thus, for any t ∈ R,

f(v + tû) = f(v) + t∇f(v) · û+ E(tû),

where

lim
|t|→0

|E(tû)|
|t|

= 0,

since ‖tû‖ = |t|‖û‖ = |t|.
We then have that, for t 6= 0,

f(v + tû)− f(v)

t
−∇f(v) · û =

E(tû)

t
,

and consequently∣∣∣∣f(v + tû)− f(v)

t
−∇f(v) · û

∣∣∣∣ =
|E(tû)|
|t|

,

from which we get that

lim
t→0

∣∣∣∣f(v + tû)− f(v)

t
−∇f(v) · û

∣∣∣∣ = 0.

(b) Suppose that f : U → R is differentiable at v ∈ U . Prove that if Dûf(v) =
0 for every unit vector û in Rn, then ∇f(v) must be the zero vector.

Proof: Suppose, by way of contradiction, that ∇f(v) 6= 0, and put

û =
1

‖∇f(v)‖
∇f(v).

Then, û is a unit vector, and therefore, by the assumption,

Dûf(v) = 0,

or
∇f(v) · û = 0.

But this implies that

∇f(v) · 1

‖∇f(v)‖
∇f(v) = 0,
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where

∇f(v) · 1

‖∇f(v)‖
∇f(v) =

1

‖∇f(v)‖
∇f(v) · ∇f(v)

=
1

‖∇f(v)‖
‖∇f(v)‖2

= ‖∇f(v)‖.

It then follows that ‖∇f(v)‖ = 0, which contradicts the assumption that
∇f(v) 6= 0. Therefore, ∇f(v) must be the zero vector.

(c) Suppose that f : U → R is differentiable at v ∈ U . Use the Cauchy–
Schwarz inequality to show that the largest value of Dûf(v) is ‖∇f(v)‖
and it occurs when û is in the direction of ∇f(v).

Proof. If f is differentiable at x, then Dûf(x) = ∇f(x) · û, as was shown
in part (a). Thus, by the Cauchy–Schwarz inequality,

|Dûf(x)| 6 ‖∇f(x)‖‖û‖ = ‖∇f(x)‖,

since û is a unit vector. Hence,

−‖∇f(x)‖ 6 Dûf(x) 6 ‖∇f(x)‖

for any unit vector û, and so the largest value that Dûf(x) can have is
‖∇f(x)‖.

If ∇f(x) 6= 0, then û =
1

‖∇f(x)‖
∇f(x) is a unit vector, and

Dûf(x) = ∇f(x) · û

= ∇f(x) · 1

‖∇f(x)‖
∇f(x)

=
1

‖∇f(x)‖
∇f(x) · ∇f(x)

=
1

‖∇f(x)‖
‖∇f(x)‖2

= ‖∇f(x)‖.

Thus, Dûf(x) attains its largest value when û is in the direction of ∇f(x).
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9. The scalar field f : U → R is said to have a local minimum at x ∈ U if there
exists r > 0 such that Br(x) ⊆ U and

f(x) 6 f(y) for every y ∈ Br(x).

Prove that if f is differentiable at x ∈ U and f has a local minimum at x, then
∇f(x) = 0, the zero vector in Rn.

Proof. Let û be a unit vector and t ∈ R be such that |t| < r; then,

f(x+ tû) > f(x),

from which we get that
f(x+ tû)− f(x) > 0.

Dividing by t > 0 we then have that

f(x+ tû)− f(x)

t
> 0.

Thus, letting t→ 0+, we get that

Dûf(x) > 0, (1)

since f is differentiable at x. Similarly, dividing by t < 0, we have

f(x+ tû)− f(x)

t
6 0,

from which we obtain, letting t→ 0−, that

Dûf(x) 6 0. (2)

Combining (1) and (2) we then have that

Dûf(x) = 0,

where û is an arbitrary unit vector. It then follows from the previous problem
that ∇f(x) = 0.

10. Let I denote an open interval in R. Suppose that σ : I → Rn and γ : I → Rn

are paths in Rn. Define a real valued function f : I → R of a single variable by

f(t) = σ(t) · γ(t) for all t ∈ I;

that is, f(t) is the dot product of the two paths at t.

Show that if σ and γ are both differentiable on I, then so is f , and

f ′(t) = σ′(t) · γ(t) + σ(t) · γ′(t) for all t ∈ I.
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Solution: Let t ∈ I and assume that both σ and γ are differentiable
at t. Then,

σ(t+ h) = σ(t) + hσ′(t) + E1(h), for |h| sufficiently small,

where

lim
h→0

‖E1(h)‖
|h|

= 0. (3)

Similarly,

γ(t+ h) = γ(t) + hγ′(t) + E2(h), for |h| sufficiently small,

where

lim
h→0

‖E2(h)‖
|h|

= 0. (4)

It then follows that, for |h| sufficiently small,

f(t+ h) = σ(t+ h) · γ(t+ h)

= (σ(t) + hσ′(t) + E1(h)) · (γ(t) + hγ′(t) + E2(h))

= σ(t) · γ(t) + hσ(t) · γ′(t) + σ(t) · E2(h)) + hσ′(t) · γ(t)
+h2σ′(t) · γ′(t) + hσ′(t) · E2(h) + E1(h) · γ(t)
+hE1(h) · γ′(t) + E1(h) · E2(h)

= f(t) + h[σ(t) · γ′(t) + σ′(t) · γ(t)] + h2σ′(t) · γ′(t)
+σ(t) · E2(h)) + hσ′(t) · E2(h) + E1(h) · γ(t)
+hE1(h) · γ′(t) + E1(h) · E2(h)

Rearranging terms and dividing by h 6= 0 and |h| small enough, we
then have that

f(t+ h)− f(t)

h
= σ(t) · γ′(t) + σ′(t) · γ(t) + +hσ′(t) · γ′(t)

+σ(t) · E2(h)

h
+ σ′(t) · E2(h) +

E1(h)

h
· γ(t)

+E1(h) · γ′(t) + E1(h) · E2(h)

h

Observe that, as h → 0, all the terms on the right hand side of the
previous expression which involve E1 or E2 go to 0, by virtue of the
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Cauchy–Schwarz inequality and (3) and (4). Therefore, we obtain
that

lim
h→0

f(t+ h)− f(t)

h
= σ(t) · γ′(t) + σ′(t) · γ(t).

Hence, f is differentiable at t, and its derivative at t is

f ′(t) = σ(t) · γ′(t) + σ′(t) · γ(t).

Since t is an arbitrary element of I, the result follows. �

11. Let σ : I → Rn denote a differentiable path in Rn. Show that if ‖σ(t)‖ is
constant for all t ∈ I, then σ′(t) is orthogonal to σ(t) for all t ∈ I.

Solution: Let ‖σ(t)‖ = c, where c denotes a constant. Then,

‖σ(t)‖2 = c2,

or
σ(t) · σ(t) = c2.

Differentiating with respect to t on both sides, and using the result
of the previous problem, we obtain that

σ(t) · σ′(t) + σ′(t) · σ(t) = 0,

or, by the symmetry of the dot–product,

2σ′(t) · σ(t) = 0,

or
σ′(t) · σ(t) = 0.

Hence, σ′(t) is orthogonal to σ(t) for all t ∈ I. �

12. A particle is following a path in three–dimensional space given by

σ(t) = (et, e−t, 1− t) for t ∈ R.

At time to = 1, the particle flies off on a tangent.

(a) Where will the particle be at time t1 = 2?
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Solution: Find the tangent line to the path at σ(1):

−→r (t) = σ(1) + (t− 1)σ′(1),

where
σ′(t) = (et,−e−t,−1) for t ∈ R.

Then,
−→r (t) = (e, 1/e, 0) + (t− 1)(e,−1/e,−1).

The parametric equations of the tangent line then are
x = e+ e(t− 1)

y = 1/e− (t− 1)/e

z = 1− t

When t = 2, the particle will be at the point in R3 with coordinates

(2e, 0,−1).

�

(b) Will the particle ever hit the xy–plane? Is so, find the location on the xy
plane where the particle hits.

Answer: The particle leaves the path at the point with coordi-
nates (e, 1/e, 0) on the xy–plane. After that, it doesn’t come back
to it. �

13. Let U denote an open and convex subset of Rn. Suppose that f : U → R is
differentiable at every x ∈ U . Fix x and y in U , and define g : [0, 1]→ R by

g(t) = f(x+ t(y − x)) for 0 6 t 6 1.

(a) Explain why the function g is well defined.

Solution: Since U is convex, x + t(y − x) is in U for 0 6 t 6 1.
Thus, f(x+ t(y − x)) is defined for t ∈ [0, 1]. �

(b) Show that g is differentiable on (0, 1) and that

g′(t) = ∇f(x+ t(y − x)) · (y − x) for 0 < t < 1.

(Suggestion: Consider

g(t+ h)− g(t)

h
=
f(x+ t(y − x) + h(y − x))− f(x+ t(y − x))

h

and apply the definition of differentiability of f at the point x+ t(y− x).)
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Proof. Since f is differentiable on U , for |h| small enough,

f(x+t(y−x)+h(y−x)) = f(x+t(y−x))+Df(x+t(y−x))(h(y−x))+E(h(y−x)),

where

lim
‖w‖→0

|E(w)|
‖w‖

= 0. (5)

Thus,

f(x+t(y−x)+h(y−x)) = f(x+t(y−x))+h∇f(x+t(y−x))·(y−x)+E((h(y−x)),

from which we get that

g(t+ h)− g(t)

h
=

f(x+ t(y − x) + h(y − x))− f(x+ t(y − x))

h

= ∇f(x+ t(y − x)) · (y − x) +
E(h(y − x))

h

for h 6= 0.

Observe that

lim
h→0

|E(h(y − x))|
h

= lim
h→0
‖y − x‖|E(h(y − x))|

‖h(y − x)‖
= 0,

by virtue of (5). It then follows that

lim
h→0

g(t+ h)− g(t)

h
= ∇f(x+ t(y − x)) · (y − x),

and therefore g is differentiable at t and g′(t) = ∇f(x+t(y−x))·(y−x).

(c) Use the Mean Value Theorem for derivatives to show that there exists a
point z is the line segment connecting x to y such that

f(y)− f(x) = Dûf(z)‖y − x‖,

where û is the unit vector in the direction of the vector y − x; that is,

û =
1

‖y − x‖
(y − x).

(Hint: Observe that g(1)− g(0) = f(y)− f(x).)

Solution: Assume that x 6= y, for if x = y the equality certainly
holds true.



Math 107. Rumbos Spring 2009 14

By the Mean Value Theorem, there exists τ ∈ (0, 1) such that

g(1)− g(0) = g′(τ)(1− 0) = g′(τ).

It then follows that

f(y)− f(x) = ∇f(x+ τ(y − x)) · (y − x).

Put z = x + τ(y − x); then, z is a point in the line segment
connecting x to y, and

f(y)− f(x) = ∇f(z) · (y − x)

= ∇f(z) · y − x
‖y − x‖

‖y − x‖

= ∇f(z) · û ‖y − x‖

= Dûf(z)‖y − x‖,

where û =
1

‖y − x‖
(y − x). �

14. Prove that if U is an open and convex subset of Rn, and f : U → R is dif-
ferentiable on U with ∇f(v) = 0 for all v ∈ U , then f must be a constant
function.

Solution: Fix xo ∈ U ; then, since U is convex, for any x ∈ U\{xo},
the line segment connecting xo to x is entirely contained in U . Fur-
thermore, by the argument in part (c) of the previous problem, there
exists z in the line segment connecting xo to x such that

f(x)− f(xo) = Dûf(z)‖x− xo‖,

where û =
1

‖x− xo‖
(x− xo).

Now, Dûf(z) = ∇f(z) · û = 0, since ∇f(x) = 0 for all x ∈ U .
Therefore,

f(x) = f(xo).

Since x was arbitrary, it follows that f maps every element in U to
f(xo); that is, f is a constant function. �


