Solutions to Review Problems for Exam 2

- 1. Consider a wheel of radius a which is rolling on the x-axis in the xy-plane. Suppose that the center of the wheel moves in the positive x-direction and a constant speed v_o . Let P denote a fixed point on the rim of the wheel.
 - (a) Give a path $\sigma(t) = (x(t), y(t))$ giving the position of the P at any time t, if P is initially at the point (0, 2a).

Solution: Let $\theta(t)$ denote the angle that the ray from the center

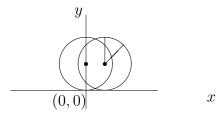


Figure 1: Circle

of the circle to the point (x(t), y(t)) makes with a vertical line through the center. Then, $v_o t = a\theta(t)$; so that $\theta(t) = \frac{v_o}{a}t$ and

$$x(t) = v_o t + a \sin(\theta(t))$$

and

$$y(t) = a + a\cos(\theta(t))$$

(b) Compute the velocity of P at any time t. When is the velocity of P horizontal? What is the speed of P at those times?

Solution: The velocity vector is

$$\sigma'(t) = (x'(t), y'(t)) = (v_o + a\theta'(t)\cos(\theta(t)), -a\theta'(t)\sin(\theta(t)))$$

where

$$\theta'(t) = \frac{v_o}{a}.$$

We then have that

$$\sigma'(t) = (v_o + v_o \cos(\theta(t)), -v_o \sin(\theta(t))).$$

The velocity of P is horizontal when

$$\sin(\theta(t)) = 0,$$

or

$$\theta(t) = n\pi$$
,

where n is an integer; and when

$$\cos(\theta(t)) \neq -1.$$

We then get that the velocity of P is horizontal when

$$\theta(t) = 2k\pi$$

where k is an integer.

The speed at the points where the velocity if horizontal is then equal to $2v_o$.

2. Let $f: \mathbb{R} \to \mathbb{R}$ denote a twice-differentiable real valued function and define

$$u(x,t) = f(x-ct)$$
 for all $(x,t) \in \mathbb{R}^2$,

where c is a real constant.

Show that

$$\frac{\partial^2 u}{\partial t^2} = c^2 \frac{\partial^2 u}{\partial x^2}.$$

Solution: Use the Chain Rule to compute

$$\frac{\partial u}{\partial t} = f'(x - ct) \cdot \frac{\partial}{\partial t}(x - ct) = -c \ f'(x - ct),$$

and

$$\frac{\partial^2 u}{\partial t^2} = c \ f''(x - ct) \cdot \frac{\partial}{\partial t}(x - ct) = c^2 \ f''(x - ct).$$

Similarly,

$$\frac{\partial^2 u}{\partial x^2} = f''(x - ct)$$

since $\frac{\partial}{\partial x}(x - ct) = 1$. Hence,

$$\frac{\partial^2 u}{\partial t^2} = c^2 f''(x - ct) = c^2 \frac{\partial^2 u}{\partial x^2}.$$

3. Let $f \colon \mathbb{R} \to \mathbb{R}$ denote a twice–differentiable real valued function and define

$$u(x,y) = f(r)$$
 where $r = \sqrt{x^2 + y^2}$ for all $(x,y) \in \mathbb{R}^2$.

The Laplacian of u, denoted by Δu , is defined to be

$$\Delta u = \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2}.$$

Express the Laplacian of u in terms of f', f'' and r.

Solution: First note that $r^2 = x^2 + y^2$, from which we get that

$$2r\frac{\partial r}{\partial x} = 2x,$$

or

$$\frac{\partial r}{\partial x} = \frac{x}{r}.$$

Similarly,

$$\frac{\partial r}{\partial y} = \frac{y}{r}.$$

Next, use the Chain Rule to compute

$$\frac{\partial u}{\partial x} = f'(r) \cdot \frac{\partial r}{\partial x} = f'(r) \frac{x}{r}.$$

Differentiating with respect to x again, using the Chain, Product and Quotient rules,

$$\frac{\partial^2 u}{\partial x^2} = \frac{\partial}{\partial x} \left(x \frac{f'(r)}{r} \right)$$

$$= \frac{f'(r)}{r} + x \frac{\partial}{\partial x} \left(\frac{f'(r)}{r} \right)$$

$$= \frac{f'(r)}{r} + x \frac{rf''(r)\frac{x}{r} - f'(r)\frac{x}{r}}{r^2}$$

$$= \frac{f'(r)}{r} + \frac{x^2}{r^2} f''(r) - \frac{x^2}{r^3} f'(r)$$

Similarly,

$$\frac{\partial^2 u}{\partial y^2} = \frac{f'(r)}{r} + \frac{y^2}{r^2} f''(r) - \frac{y^2}{r^3} f'(r).$$

Hence

$$\Delta u = \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2}$$

$$= 2\frac{f'(r)}{r} + \frac{x^2 + y^2}{r^2}f''(r) - \frac{x^2 + y^2}{r^3}f'(r)$$

$$= 2\frac{f'(r)}{r} + \frac{r^2}{r^2}f''(r) - \frac{r^2}{r^3}f'(r)$$

$$= 2\frac{f'(r)}{r} + f''(r) - \frac{1}{r}f'(r)$$

$$= f''(r) + \frac{1}{r}f'(r).$$

4. Let f(x,y) = 4x - 7y for all $(x,y) \in \mathbb{R}^2$, and $g(x,y) = 2x^2 + y^2$.

(a) Sketch the graph of the set $C = g^{-1}(1) = \{(x, y) \in \mathbb{R}^2 \mid g(x, y) = 1\}.$

Solution: The curve C is given by the set of points (x,y) in \mathbb{R}^2 such that

$$2x^2 + y^2 = 1,$$

or

$$\frac{x^2}{1/2} + y^2 = 1.$$

That is, C is an ellipse with minor vertices $\pm 1/\sqrt{2}$ and major vertices ± 1 . The sketch is shown in Figure 2.

(b) Show that at the points where f has an extremum on C, the gradient of f is parallel to the gradient of g.

Solution: Let $\sigma(t)$ be a parametrization of the ellipse. We want to find a value of t for which the function $f(\sigma(t))$ is the largest. Thus, we first look for critical points of this function. By the Chain Rule,

$$\frac{d}{dt}\left(f(\sigma(t))\right) = \nabla f(\sigma(t)) \cdot \sigma'(t).$$

Thus, t is a critical point if the tangent vector $\sigma'(t)$ is perpendicular to $\nabla f(x,y) = 4\hat{i} - 7\hat{j}$.

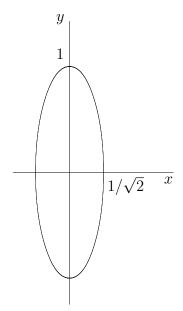


Figure 2: Sketch of ellipse

On the other hand, from

$$g(\sigma(t)) = 1$$
 for all t

we get that

$$\nabla g(\sigma(t))\cdot\sigma'(t)=0$$

so that $\sigma'(t)$ is also perpendicular to $\nabla g(x,y) = 4x\hat{i} + 2y\hat{j}$. Hence, ∇f and ∇g must be parallel at a critical points; that is, there must be a constant $\lambda \neq 0$ such that

$$\nabla g(x,y) = \lambda \nabla f(x,y). \tag{1}$$

(c) Find largest and the smallest value of f on C.

Solution: To find the critical points of f on C we use the condition (1) derived in the previous part, or

$$4x\hat{i} + 2y\hat{j} = 4\lambda\hat{i} - 7\lambda\hat{j}.$$

We then get that

$$4x = 4\lambda$$

and

$$2y = -7\lambda.$$

In other words, a critical point (x, y) must lie in the line

$$2y = -7x$$
.

Next, we find the intersection of this line with the ellipse. Solving for y and substituting into the equation of the ellipse we get that

$$2x^2 + \left(\frac{-7x}{2}\right)^2 = 1$$

or

$$2x^2 + \frac{49}{4}x^2 = 1$$

or

$$\frac{57}{4}x^2 = 1$$

or

$$x^2 = \frac{4}{57}$$

from which we get that

$$x = \pm \frac{2}{\sqrt{57}}.$$

We therefore get the critical points

$$\left(\frac{2}{\sqrt{57}}, -\frac{7}{\sqrt{57}}\right)$$
 and $\left(-\frac{2}{\sqrt{57}}, \frac{7}{\sqrt{57}}\right)$.

Evaluating f at each of these points we find that

$$f\left(\frac{2}{\sqrt{57}}, -\frac{7}{\sqrt{57}}\right) = \frac{8}{\sqrt{57}} + \frac{49}{\sqrt{57}} = \sqrt{57}$$

and

$$f\left(-\frac{2}{\sqrt{57}}, \frac{7}{\sqrt{57}}\right) = -\frac{8}{\sqrt{57}} - \frac{49}{\sqrt{57}} = -\sqrt{57}.$$

Thus, f is the largest at $\left(\frac{2}{\sqrt{57}}, -\frac{7}{\sqrt{57}}\right)$ and the smallest at $\left(-\frac{2}{\sqrt{57}}, \frac{7}{\sqrt{57}}\right)$. The largest value of f on C is then $\sqrt{57}$, and its smallest value on C is $-\sqrt{57}$.

5. Let $C = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 = 1, y \ge 0\}$; i.e., C is the upper unit semi–circle. C can be parametrized by

$$\sigma(\tau) = (\tau, \sqrt{1 - \tau^2})$$
 for $-1 \leqslant \tau \leqslant 1$.

(a) Compute s(t), the arclength along C from (-1,0) to the point $\sigma(t)$, for $0 \le t \le 1$.

Solution: Compute $\sigma'(\tau) = \left(1, -\frac{\tau}{\sqrt{1-\tau^2}}\right)$. for all $\tau \in (-1, 1)$.

Then,

$$\|\sigma'(\tau)\| = \sqrt{1 + \frac{\tau^2}{1 - \tau^2}} = \frac{1}{\sqrt{1 - \tau^2}}.$$

It then follows that

$$s(t) = \int_{-1}^{t} \frac{1}{\sqrt{1-\tau^2}} d\tau \text{ for } -1 \leqslant t \leqslant 1.$$

(b) Compute s'(t) for -1 < t < t and sketch the graph of s as function of t.

Solution: By the Fundamental Theorem of Calculus,

$$s'(t) = \frac{1}{\sqrt{1 - t^2}}$$
 for $-1 < t < 1$.

Note then that s'(t) > 0 for all $t \in (-1,1)$ and therefore s is strictly increasing on (-1,1).

Next, compute the derivative of s'(t) to get the second derivative of s(t):

$$s''(t) = \frac{t}{(1-t^2)^{3/2}}$$
 for $-1 < t < 1$.

It then follows that s''(t) < 0 for -1 < t < 0 and s''(t) > 0 for 0 < t < 1. Thus, the graph of s = s(t) is concave down on (-1,0) and concave up on (0,1).

Finally, observe that s(-1) = 0, $s(0) = \pi/2$ (the arc-length along a quarter of the unit circle), and $s(1) = \pi$ (the arc-length along a semi-circle of unit radius). We can then sketch the graph of s = s(t) as shown in Figure 3.

(c) Show that $\cos(\pi - s(t)) = t$ for all $-1 \le t \le 1$, and deduce that

$$\sin(s(t)) = \sqrt{1 - t^2}$$
 for all $-1 \leqslant t \leqslant 1$.

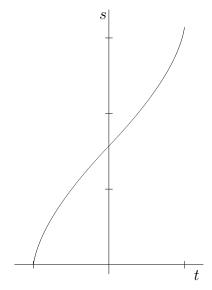


Figure 3: Sketch of s = s(t)

Solution: Figure 4 shows the upper unit semicircle and a point $\sigma(t)$ on it. Putting $\theta(t) = \pi - s(t)$, then $\theta(t)$ is the angle, in radians, that the ray from the origin to $\sigma(t)$ makes with the positive x-axis. It then follows that

$$\cos(\theta(t)) = t$$

and

$$\sin(\theta(t)) = \sqrt{1 - t^2}.$$

Since

$$\sin(\theta(t)) = \sin(\pi - s(t)) = \sin(s(t)),$$

the result follows.

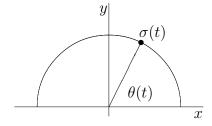


Figure 4: Sketch of Semi-circle

6. Let $\omega = 2x \, dx + y \, dy$ and $\eta = y \, dx - x \, dy$ denote differential 1-forms. Compute each of the following $\omega \wedge d\eta$, $\eta \wedge d\omega$ and $d(\omega \wedge \eta)$.

Solution: Compute

$$d\omega = d(2x dx + y dy) = 2 dx \wedge dx + dy \wedge dy = 0,$$

$$d\eta = d(y dx - x dy) = dy \wedge dx - dx \wedge dy = -2 dx \wedge dy.$$

Then

$$\omega \wedge d\eta = (2x dx + y dy) \wedge (-2 dx \wedge dy) = -4x dx \wedge dx \wedge dy - 2y dy \wedge dx \wedge dy = 0,$$

since
$$dx \wedge dx = 0$$
 and $dy \wedge dx \wedge dy = -dx \wedge dy \wedge dy = 0$, and

$$\eta \wedge d\omega = \eta \wedge 0 = 0.$$

Finally,

$$\omega \wedge \eta = (2x dx + y dy) \wedge (y dx - x dy)$$

= $2xy dx \wedge dx - 2x^2 dx \wedge dy + y^2 dy \wedge dx - xy dy \wedge dy$
= $-(2x^2 + y^2) dx \wedge dy$;

so that

$$d(\omega \wedge \eta) = -(4x dx + 2y dy) dx \wedge dy = 0.$$

7. Let C denote the unit circle traversed in the counterclockwise direction. Evaluate the line integral $\int_C x^3 dy - y^3 dx$.

Solution: Observe that $\int_C x^3 dy - y^3 dx$ is the flux of the vector field $F(x,y) = x^3 \hat{i} + y^3 \hat{j}$, so that, by the divergence form of the Fundamental Theorem of Calculus in \mathbb{R}^2 ,

$$\int_C x^3 \, \mathrm{d}y - y^3 \, \mathrm{d}x = \int_D \mathrm{div} F \, \mathrm{d}x \, \mathrm{d}y,$$

where D is the unit disc in \mathbb{R}^2 centered at the origin, and

$$\operatorname{div} F = 3x^2 + 3y^2 = 3(x^2 + y^2).$$

Using polar coordinates we then get that

$$\int_{C} x^{3} dy - y^{3} dx = \int_{0}^{2\pi} \int_{0}^{1} 3r^{2} r dr d\theta$$
$$= 6\pi \int_{0}^{1} r^{3} dr$$
$$= \frac{3\pi}{2}.$$

8. Let $F(x,y) = y \hat{i} - x \hat{j}$ and R be the square in the xy-plane with vertices (0,0), (2,-1), (3,1) and (1,2). Evaluate $\int_{\partial R} F \cdot n \, ds$.

Solution: Observe that the divergence of F is

$$\operatorname{div} F = \frac{\partial}{\partial x}(y) + \frac{\partial}{\partial y}(-x) = 0$$

for all $(x, y) \in \mathbb{R}^2$, so that, by the divergence form of the Fundamental Theorem of Calculus in \mathbb{R}^2 ,

$$\int_{\partial R} F \cdot n \, ds = \int_{R} \operatorname{div} F \, dx \, dy = 0.$$