Review Problems for Final Exam

- 1. In this problem, x and y denote vectors in \mathbb{R}^n .
 - (a) Use the triangle inequality to derive the inequality

$$| \|y\| - \|x\| | \le \|y - x\|$$
 for all $x, y \in \mathbb{R}^n$.

- (b) Use the inequality derived in the previous part to show that the function $f: \mathbb{R}^n \to \mathbb{R}$ given by f(x) = ||x||, for all $x \in \mathbb{R}^n$, is continuous.
- (c) Prove that the function $g: \mathbb{R}^n \to \mathbb{R}$ given by $g(x) = \sin(||x||)$, for all $x \in \mathbb{R}^n$, is continuous.
- 2. Define the scalar field $f: \mathbb{R}^n \to \mathbb{R}$ by $f(x) = ||x||^2$ for all $x \in \mathbb{R}^n$.
 - (a) Show that f is differentiable on \mathbb{R}^n and compute the linear map

$$Df(x): \mathbb{R}^n \to \mathbb{R}$$
 for all $x \in \mathbb{R}^n$.

What is the gradient of f at x for all $x \in \mathbb{R}^n$?

- (b) Let \widehat{u} denote a unit vector in \mathbb{R}^n . For a fixed vector v in \mathbb{R}^n , define $g: \mathbb{R} \to \mathbb{R}$ by $g(t) = ||v t\widehat{u}||^2$, for all $t \in \mathbb{R}$. Show that g is differentiable and compute g'(t) for all $t \in \mathbb{R}$.
- (c) Let \widehat{u} be as in the previous part. For any $v \in \mathbb{R}^n$, give the point on the line spanned by \widehat{u} which is the closest to v. Justify your answer.
- 3. For points $P_1(1,4,7)$, $P_2(7,1,4)$ and $P_3(4,7,1)$ in \mathbb{R}^3 , define the oriented triangle $T = [P_1, P_2, P_3]$, and evaluate $\int_T dx \wedge dy$.
- 4. Let $\Phi \colon \mathbb{R}^2 \to \mathbb{R}^2$ denote the map from the *uv*-plane to the *xy*-plane given by

$$\Phi\begin{pmatrix} u \\ v \end{pmatrix} = \begin{pmatrix} 2u \\ v^2 \end{pmatrix} \quad \text{for all} \quad \begin{pmatrix} u \\ v \end{pmatrix} \in \mathbb{R}^2,$$

and let T be the oriented triangle [(0,0),(1,0),(1,1)] in the uv-plane.

- (a) Give the image, R, of the triangle T under the map Φ , and sketch it in the xy-plane.
- (b) Show that Φ is differentiable and give a formula for its derivative at every point $\begin{pmatrix} u \\ v \end{pmatrix}$ in \mathbb{R}^2 .

5. Compute the arc length along the portion of the cycloid given by the parametric equations

$$x = t - \sin t$$
 and $y = 1 - \cos t$, for $t \in \mathbb{R}$,

from the point (0,0) to the point $(2\pi,0)$.

6. Evaluate the double integral $\int_R e^{-x^2} dx dy$, where R is the region in the xy-plane sketched in Figure 1.

Figure 1: Sketch of Region R in Problem 6

7. Evaluate the line integral $\int_{\partial R} \omega$, where ω is the differential 1–form

$$\omega = (x^4 + y) dx + (2x - y^4) dy,$$

R is the rectangular region

$$R = \{(x, y) \in \mathbb{R}^2 \mid -1 \le x \le 3, \ -2 \le y \le 1\},\$$

and ∂R is traversed in the counterclockwise sense.

8. Let $g \colon \mathbb{R}^3 \to \mathbb{R}$ be differentiable and define

$$S = g^{-1}(c) = \{(x,y,z) \in \mathbb{R}^3 \mid g(x,y,z) = c\}$$

for some constant c. Assume that $S \neq \emptyset$ and that $\nabla g(x, y, x) \neq \mathbf{0}$ for all $(x, y, z) \in S$. Let I be an open interval or real numbers and let $\sigma \colon I \to \mathbb{R}^3$ be a differentiable path satisfying $\sigma(t) \in S$ for all $t \in I$. Prove that $\nabla g(\sigma(t))$ is orthogonal to $\sigma'(t)$ for all $t \in I$.