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Solutions to Assignment #3

1. [Problem 1.1.11 on page 8 in Allman and Rhodes] Explain why the model

ΔP = rP

leads to the formula
Pt = (1 + r)tPo.

Solution: Write the equation in the form

Pt+1 = (1 + r)Pt, (1)

and assume that Pt is Po when t = 0. Then, by (1),

P1 = (1 + r)Po,

and therefore, using (1) again (this time for t = 1),

P2 = (1 + r)P1 = (1 + r)1 + r)Po = (1 + r)2Po.

We may now proceed by induction on n. Assume therefore that we have estab-
lished that

Pn = (1 + r)nPo.

Then, applying (1) with t = n,

Pn+1 = (1 + r)Pn = (1 + r)(1 + r)nPo = (1 + r)n+1Po.

Hence, by the Principle of Mathematical Induction,

Pt = (1 + r)tPo for t = 0, 1, 2, . . . □

2. [Problem 1.2.7 on page 18 in Allman and Rhodes]

Solution: Figure 1 shows the plot of the insect population data displayed in
Table 1.6, page 18, of Allman and Rhodes. It shows a typical S–curve associated
with the logistic growth model. By inspecting the graph, we can get an estimate
for the carrying capacity of the population, K, of about 8.5 (Note: the horizontal
line at N = 8.5 is also shown in the graph). To estimate r we may take the first
two data points and compute ΔN in the equation

ΔN = rNt

(
1 − Nt

K

)
. (2)
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Figure 1: Plot of Insect Population Values in Table 1.6 of Allman and Rhodes, p. 18
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Taking t = 0, so that ΔN = N1 − No = 1.52 − 0.97 = 0.55, and K = 8.5, we
can estimate r from the last equation by solving for it

r =
ΔN

No

(
1 − No

K

) ≈ 0.55

0.97
(
1 − 0.97

8.5

) ≈ 0.64. □

Notice that this estimate for r only takes into account the first two data points
so we don’t expect it to be be an estimate that works well for the entire data
set. The estimate for K is essentially a graphical estimate and we don’t have a
handle on how accurate it is.

There is a better way to estimate r and K which takes into account the whole
set of data and which takes advantage of the computational capabilities of
MATLABR⃝. The idea is to write the logistic equation in (2) in the form

ΔN

N
= r

(
1 − N

K

)
,

or
ΔN

N
= r − r

K
N, (3)

and observe that equation (3) says that there is a linear relation between the

per–capita growth rate,
ΔN

N
, and N . Thus, if we plot the values of

ΔN

N
given

by the data versus N , the points should arrange themselves close to a straight

line with slope m = − r

K
and y–intercept r. Hence, plotting the per–capita

growth rates, fitting a straight line through the data points, and computing the
slope and y–intercept of the resulting line should give us estimates for r and K.

Figure 2 on page 4 shows the graph of
ΔN

N
versusN obtained using MATLABR⃝.

Observe that the data points fall suspiciously into one, neat straight line (an
indication that the data in Table 1.6 on page 18 of Allman and Rhodes, most
likely, is made up; that is, generated by the logistic model and not from an
actual experiment). We can trace the line through the points as shown in
Figure 3 on page 4. We can then estimate the y–intercept and the slope of the
line graphically, or we can use the polyfit function in MATLABR⃝to obtain
the slope and y intercept of the least–square regression line. Letting Y be an

array containing the values for
ΔN

N
and X the array of values of N(i), for

i = 1, 2, ..., 10, and typing

polyfit(X,Y,1)
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Figure 2: Plot of
ΔN

N
versus N
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Figure 3: Plot of
ΔN

N
versus N and best–fit line
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yields

m y-int

the slope, m, and the y–intercept of the best–fitting line through the data points.
In this particular case, we obtain the values

-0.0756 0.6344

Thus,
m = −0.0756 and r = 0.6344.

Using the expression m = − r

K
for the slope, we obtain an estimate for the

carrying capacity, K, to be

K = − r

m
≈ 8.3883.

3. [Problem 1.2.8 on page 18 in Allman and Rhodes] Suppose the growth of a
population is modeled by the equation

Nt+1 = Nt + 0.2Nt

(
1 − Nt

200000

)
, (4)

where Nt is measured in individuals.

(a) Find an equation of the same form, describing the same model, but with
the population measured in thousands of individuals.

Solution: Let Mt =
1

1000
Nt for each t = 0, 1, 2, . . . Divide equation (??)

by 1000 and rearrange the last term to get

Nt+1

1000
=

Nt

1000
+ 0.2

Nt

1000

(
1 − Nt/1000

200

)
.

Thus, the equation for Mt reads

Mt+1 = Mt + 0.2Mt

(
1 − Mt

200

)
. □
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Figure 4: US Census Data since 1790

(b) Find the equation of the same form, describing the same model, but with
the population measured in units chosen so that the carrying capacity is 1
in those units

Solution: This time we let Mt =
1

200000
Nt; that is, we divide Nt by the

carrying capacity. Then, proceeding as in the previous example (this time
dividing by 200000) we obtain

Mt+1 = Mt + 0.2Mt (1 −Mt) . □

4. (US Census Data.) The MS Excel file CensusDataUS in the Math 36 webpage
(see the courses website at http://pages.pomona.edu/˜ajr04747) contains
the total US population (in millions of people) for each year that a census has
been taken in the United States.

(a) Use MATLABR⃝to get a plot of the US population as a function of t, where
t is in units of 10 years since the year 1790.

Solution: Figure 4 on page 6 shows the plot. □

(b) If the US population follows a Malthusian model, what would the growth
rate � be? Using this value of �, compute the population values that the
model predicts for t = 1, 2, 3, . . . Plot the predicted and actual values on
the same graph. How well do these predictions compare with the actual
data?
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Figure 5: US Census Data and Values Predicted by Malthusian Model

Solution: If we let Nt denote the US population (in millions) for t =
0, 1, 2, . . ., the Malthusian model predicts that Nt = No�

t for t = 0, 1, 2, . . .
We can take No to be the US population in 1790; i.e., No = 3.929. We can
estimate � by computing

� =
N1

No

≈ 5.308

3.929
≈ 1.351.

We use these values of No and � to compute the values predicted by the
Malthusian model. These values are plotted in Figure 4 (solid curve with
‘+’ for the predicted values) along with the actual US Census data. We can
see that the predicted values diverge a great deal from the actual census
data. □

5. (US Census Data, continued). Starting with the solution to the Malthusian
model: Nt = N0�

t, take logarithms on both sides to get

lnNt = lnN0 + t ln(�).

Thus, the relationship between lnNt and t should be linear with slope ln(�) and
y–intercept lnN0.

(a) If X represents a row of values, and Y another row of values of the same
size, the MATLABR⃝ function polyfit(X,Y,1) returns the slope m and y–
intercept yo of the line that best fits the data (in the sense of least squares
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Figure 6: US Census Data and Values Predicted by Malthusian Model

regression) in X and Y:
y = mx+ yo.

Use this function to obtain estimates for the values of lnN0 and ln(�)

Solution: Define t = [0:21] and Y = log(USpop) in MATLABR⃝, where
USpop is the array containing the US Census data. Then, polyfit(t,Y,1)
returns the slope m and y–intercept b for the least–squares regression line.
The MATLABR⃝output yields m = 0.2019 and b = 1.8023. □

(b) Obtain estimates for N0 and �, and use them to generate a new set of
predicted values for the US population. Plot these, along with the actual
data, and assess how good the fit is.

Solution: Using the values for m and b obtained in the previous part,
we get the following estimates for � and No: � = exp(m) ≈ 1.2237 and
No = exp(b) ≈ 6.0634. As in the previous problem, we can use these values
to obtain predicted population values according to the Malthusian model.
These values are plotted in Figure 6 (solid curve with ‘x’ for the predicted
values) along with the actual US Census data. We see by inspecting the
graph that the fit, though better than the one in the previous problem, is
actually not very good.


