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Solutions to Assignment #5

1. Suppose that X; satisfies the difference inequlity
|Xt+1| §n|Xt| for t:0,1,2,3,...
where 0 < 1 < 1. Prove that tlim Xy =0.
—00

Solution: For t = 0 we get
[ X1| < ] Xol.

Similarly, for t = 1, we get
| Xo| < nlXa| < 7P| Xol,

by the previous inequality. We may, therefore, proceed by induction on n to
prove that
| X <n"|X,| for n=1,2,3,...

We therefore have that
0< Xy <7f|X,|, fort=0,1,2,...,
where 0 < n < 1, so that

lim n* = 0.

t—o00

It then follows by the Squeeze Theorem, or the Sandwich Theorem, that
lim | X,|=0.
n—o0

Hence, lim X; = 0. U

t—o0
2. The Principle of Linearized Stability for the difference equation

Nt+1 = f(Nt>

states that, if f is differentiable at a fixed point N* and
[f (N <1,

then N* is an assymptotically stable equilibrium solution.

In this problem we use the Principle of Linearized stability to analyze the fol-
lowing population model:

kN,
b+ N,

Nt+1 =

where k and b are postive parameters.
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(a)

Write the model in the form Ny = f(N;) and give the fixed points of f.
What conditions of & and b must be imposed in order to ensure that the
model will have a non—negative steady state?
k
Solution: f(x) = % in this case, so that the fixed points of f are
x

solutions to the equation

or

Factoring the last expression we get

k
—1)=0.
x(b—l—m >

Thus, either x = 0 or T 1 =0. Solving the last expression for = we
x
obtain x = k — b. Thus, the fixed point of f are

N*=0 and N*=k-—0b.
For the second fixed point to be nonnegative, it must be the case that
b<k O

Determine the stability of the equilibrium points found in part (a).
Solution: We apply the Principle of Linearized Stability. Compute

bk
/ —
T =3
, bk k , .
Then, f'(0) = 23 > 1 since b < k, by part (a). Thus, if b < k, then

N* = 0 is unstable, by the Principle of Linearized Stability. If if b = k,
the Principle of Linearized Stability does not apply.

bk b
Similarly, since f'(k —b) = = < 1 since b < k, by part (a).
Thus, if b < k, then N* = k — b is asymptotically stable, by the Principle
of Linearized Stability. On the other hand, if b = k, the Principle of

Linearized Stability does not apply. [

3. [Problems 1.3.6 (d)(e) on page 29 in Allman and Rhodes]
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()

(e)

Determine the equilibrium points of AP = aP — bP?.

Solution: Solve the equation aP—bP? = 0, P(a—bP) = 0 to obtain P* =0
or P* = a/b (here we are assuming that b # 0). [

Determine the equilibrium points of P, = cP, — dP?.

Solution: Here we find the fixed points of f(P) = cP — dP?; that is, we
solve the equation f(P) = P, or ¢cP — dP? = P. To solve this equation,
we rewrite it as

(c—1)P —dP* =0,

from which we get, after factoring that
Pl(c—1)—dP]=0.

Thus, P*=0or P*=(c—1)/d, ford #0. O

4. [Problems 1.3.7 (d)(e) on page 29 in Allman and Rhodes] For each of the equa-
tions in the previous problem, use the principle of linearized stability to deter-
mine the stability of each of the equilibrium points.

(d)

AP = aP — bP2.
Solution: Here, f(P) = P +aP —bP?, so that f'(P) =1+ a—2bP. Thus,
f'(0) =1+ a. Hence, P* = 0 is stable for —2 < a < 0, and unstable for
a>0ora< —2.

Similarly, since f'(a/b) =1+ a —2b(a/b) =1 —a, P* = a/b is stable for
0 <a < 2, and unstable fora <0ora>2. O

Py = cP, — dP?.

Solution: In this case, f(P) = ¢P — dP? and so f/'(P) = ¢ — 2dP.

Thus, f/(0) = ¢ and so Px = 0 is stable if |¢| < 1 and unstable if |¢| > 1.
Similarly, since f'((c—1)/d) =2—¢, P* = (¢c—1)/d is stable is 1 < ¢ < 3,
and unstableif c<lorec>3. O

5. Problems 1.3.11 (a)(b)(c)(d) on page 30 in Allman and Rhodes.

Note: The code for the MATLAB® program onepop may be downloaded from the
courses website at http://pages.pomona.edu/ ajr04747.

Many biological processes involve diffusion. A simple example is the passage of
oxygen from the from the lung into the bloodstream (and the passage of carbon
dioxide in the opposite direction). A simple model views the lung as a single
compartment with oxygen concentration L and the bloodstream an adjoining
compartment with oxygen concentration B. If, for simplicity, we assume that
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the compartments both have volume 1, then in the time span of a single breath
the total oxygen K = L + B is constant. If we think of a very small time
interval, then the increase of B over this time interval will be proportiaonal to
the difference between L and B. That is,

AB = r(L — B). (1)

(This experimental fact is sometimes called Fick’s Law.)

(a)

In what range must the parameter r be for this model to be meaningful?

Solution: 0 < r < 1 since (i) the oxigen concentration in the bloodstream
must increase (with oxygen coming from the lungs) if L > B, and decrease
of B > L; and (ii) even if B is very low, it can not increase by an amount
larger than the amount of oxygen available in the lungs. [

Use the fact that L + B = K to write the model (1)using only the param-
eters 7 and K to describe AB in terms of B.

Solution: Solving for L in L + B = K and susbtituting into (1 yields

AB=r(K—-2B). O

For r = 0.1 and K = 1, and a variety of choices for B,, investigate the
MATLAB®program onepop. How do things change is a different valueof
r is used?

Solution: For any initial condition B,, the solutions tend to K/2 = 0.5 as
t — oo. The result is the same for any » with 0 <r < 1. [

Algebraically, find the equilibrium point B* for (1. Does this fit with what
you saw in part (¢)? Can you explain this result intuitively?

Solution: We apply the Principle of Linearized Stability. In this case
f(B) = B+ r(K — 2B), so that the the fixed point of f is B such that
f(B) = B, which yields B* = K/2. To determine whether or not B* is
stable, compute f'(B) = 1—2r. Thus, B* = K/2 isstableif |1 —2r| < 1 or
0 < r < 1. This is precisely what we saw in the numerical experiments in
part (c). Intuitevly, as time goes on, after many breaths, the oxygen con-
centration in the bloodstream should reach a steady state which is equal
the amoung of oxygen in the lungs. [



