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Solutions to Review Problems for Exam #2

1. Consider a pond that initially contains 10 million gallons of fresh water.1 Water
containing an undesirable chemical flows into the pond at a rate of 5 million
gallons per year and the mixture in the pond flows out at the same rate. Suppose
the concentration of the chemical in the incoming water is 2 grams per gallon.
Let Q(t) denote the amount of the chemical in grams in the pond at time t.

(a) Write a differential equation for the quantityQ = Q(t), where t is measured
in years.

Solution: Use the conservation principle:

dQ

dt
= rate of Q in − rate of Q out,

for the amount of chemical, Q(t), in grams, in the pond at time
t. The rate of inflow of Q is modeled by

rate of Q in = cinF,

where cin is the concentration of the chemical going in (in this
case, cin = 2 grams per gallon), and F is the rate of flow of water
into the pond (in this case, F = 5 million gallons per year). We
then have that

rate of Q in = 10 million grams per year.

The rate of Q out is

rate of Q out = c(t)F,

where

c(t) =
Q(t)

V

is the concentration of the chemical in the pond (here, we are
assuming instant mixing). The volume, V , of the water in the
pond is 10 million gallons (we are assuming that the rate of flow
of water into the pond is the same as the rate of flow out, so that
the volume of water in the pond remains constant). Thus,

rate of Q out =
1

2
Q(t) million grams per year.

1Adapted from Example 3 on page 34 of Elementary Differential Equations and Boundary Value
Problems, Seventh Edition, by Boyce and DiPrima. Wiley, New York, 2001
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Thus, the differential equation describing the evolution of Q =
Q(t) in time is

dQ

dt
= 10− Q

2
,

in millions of grams per year. □

(b) Give the equilibrium solution, Q, to the equation in part (a).

Answer: Q = 20 million grams. □

(c) Give Q(t) for all t, and sketch an approximate graph of Q as a function of
t.

Solution: The general solution is Q(t) = 20 + Ce−t/2, where C
is an arbitrary constant. Since there was no chemical in the pond
initially, Q(0) = 0. Then, C = −20, so that

Q(t) = 20(1− e−t/2).

A sketch of the graph of Q = Q(t) is shown in Figure 1. □

t

Q

Q

Figure 1: Sketch of graph of Q(t)

(d) What is the limiting value of Q(t) as t→∞?

Answer: The limiting value of Q(t) as t→∞ is Q = 20 million
grams. □

2. Consider a tank used in certain hydrodynamic experiments.2 After one exper-
iment, the tank contains 200 liters of a dye solution with a concentration of 1
gram per liter. To prepare for the next experiment, the tank is to be rinsed

2Problem 1 on page 57 of Elementary Differential Equations and Boundary Value Problems,
Seventh Edition, by Boyce and DiPrima. Wiley, New York, 2001
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with fresh water flowing at the rate of 2 liter per minute. The well–stirred
solution flows out at the same rate. Find the time that will elapse before the
concentration in the tank reaches 1% if its initial value.

Solution: Let Q(t) denote the amount of dye in the tank in grams
as a function of time, t, in minutes. We use the conservation principle

dQ

dt
= rate of Q in − rate of Q out.

In this case
rate of Q in = 0,

and the rate of Q out is

rate of Q out = c(t)F,

where c(t) is the concentration of the dye, and F = 2 liters per minute.
We assume that the volume, V , of solution in the tank is fixed at 200
liters. We then have that

dQ

dt
= −2c(t). (1)

Dividing the differential equation in (1) by V = 200, we obtain a
differential equation for the concentration of dye in the solution:

dc

dt
= − 1

100
c(t). (2)

The general solution of (2) is

c(t) = Ce−t/100,

where C is an arbitrary constant. Since c(0) = 1 gram per liter, we
have that C = 1. Therefore,

c(t) = e−t/100

in grams per liter.

We would like to find the time, t, in minutes, at which c(t) = 0.01;
that is, 1% of the initial concentration. Thus, we need to solve the
equation

e−t/100 = 0.01,

which leads to t ≈ 460.5 minutes, or about 7 hours and 40 minutes.
□

3. Luria and Delbrück3 devised the following procedure (known as the fluctuation

3(1943) Mutations of bacteria from virus sensitivity to virus resistance. Genetics, 28, 491–511
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test) to estimate the mutation rate, a, for certain bacteria:

Imagine that you start with a single normal bacterium (with no mutations) and
allow it to grow to produce several bacteria. Place each of these bacteria in
test–tubes each with media conducive to growth. Suppose the bacteria in the
test–tubes are allowed to reproduce for n division cycles. After the nth division
cycle, the content of each test–tube is placed onto a agar plate containing a
virus population which is lethal to the bacteria which have not developed resis-
tance. Those bacteria which have mutated into resistant strains will continue to
replicate, while those that are sensitive to the virus will die. After certain time,
the resistant bacteria will develop visible colonies on the plates. The number of
these colonies will then correspond to the number of resistant cells in each test
tube at the time they were exposed to the virus.

(a) Estimate the probability, po, that at the end of the n division cycles there
will be no resistant bacteria. State all assumptions you make and justify
your answer.

Solution: The mutation rate, a, is the probability that a muta-
tion will occur during a single cell division. In n division cycles
there will be N = 2n bacteria. During that period of time, there
have been

1 + 2 + 22 + ⋅ ⋅ ⋅+ 2n−1,

divisions since each bacterium in previous generations has divided.
If we denote the number of divisions by D, then we see that

2D = 2 + 22 + ⋅ ⋅ ⋅+ 2n−1 + 2n = D + 2n − 1.

It then follows that D = 2n− 1, and so the number of divisions is
2n− 1 or N − 1. The probability that there is no mutation in any
of the cell divisions is then

po = (1− a)N−1.

If we write � = a(N−1) ≈ aN , the average number of mutations,
then

po ≈
(

1− �

N

)N−1
≈ e−�

when N is very large.

Alternatively, if we model the number of mutations, M(n), by a
Poisson random variable with parameter � = �(n), where n is the
number of division cycles, then the probability of no mutations is

po = P [M(n) = 0] = e−�(n) = e−�. □
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□

(b) In one of the experiments of Luria and Delbrück in 1943, they observed
that out of 100 cultures, each of about 2.8 × 108 bacteria, 57 showed no
resistant bacteria. Use this information to estimate:

i. The average number of mutations, �, that occurred before the bacteria
were exposed to the virus;

Solution: In this case po ≈ 0.57; so that, from po = e−�, we
obtain that

� ≈ − ln(po) = − ln(0.57) =̇ 0.56. □.

□

ii. The mutation rate, a; that is, the probability that a given bacterium
will mutate in a division cycle.

Solution: There are two possible answers to this question:
Answer 1:

a ≈ �

N
≈ 0.56

2.8× 108
=̇ 2.0× 10−9.

Answer 2:
Integrating �′(t) = aN(t) with respect to t, we obtain that

�(t) =
a

k
(N(t)− 1),

where k is the per capita growth rate of the bacteria. If t is
measured in numbers of division cycles, then N(t) = 2t and
therefore k = ln 2. When t = n and n is very large,

�(n) ≈ a

ln 2
2n =

aN

ln 2
.

Therefore, a ≈ ln 2
�

N
≈ (0.6931)

0.56

2.8× 108
=̇ 1.4× 10−9. □

4. Imagine a culture grown from a single bacterium. Suppose that there have been
n division cycles. Assume that no bacterium has died during those cycles.

(a) How large is the culture? How many divisions have there been? Assume
that all divisions that occur during the same cycle happen at the same
time (these are usually referred to as synchronous divisions).
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Solution: If the number of division cycles is n, then the total
bacterial population is N = 2n at the end of the n division cycles.
During that period of time, there have been

1 + 2 + 22 + ⋅ ⋅ ⋅+ 2n−1

divisions since each bacterium in previous generations has divided.
If we denote the number of divisions by D, then we see that

2D = 2 + 22 + ⋅ ⋅ ⋅+ 2n−1 + 2n = D + 2n − 1.

It then follows that D = 2n− 1, and so the number of divisions is
2n − 1 or N − 1. □

(b) Recall that the mutation rate, a, gives the probability that a given bac-
terium will mutate during a division. Let N denote the total bacterial
population in a culture grown out of a single bacterium in n division cy-
cles. Show that the probability, po, of no mutants present after the n
division cycles can be approximated by e−�, where � = aN and N is very
large.

Suggestion: If D is the number of divisions that have occurred in n division
cycles, what is the probability that no mutation has occurred in any of
those divisions? What happens to this probability as N tends to infinity?

Solution: The probability that there are no mutants at the end
of the nth division cycle, is the probability that there have been
no mutations in the N − 1 divisions that have occurred. The
probability of no mutation in one division is 1−a. It then follows
that

po = (1− a)N−1.

Writing a as
�

N
we then have that

po =
(

1− �

N

)−1 (
1− �

N

)N
.

Thus, for N very large,

po ≈ lim
N→∞

{(
1− �

N

)−1 (
1− �

N

)N}
= e−�.

□
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(c) There will be exactly one mutant in the culture after n division cycles if no
mutation occurs in the first n− 2 cycles, and exactly one mutation occurs
in the (n− 1)st cycle.

i. Explain why the probability of one mutation in the (n − 1)st cycle is
a ⋅ 2n−1.

Solution: Since a is the probability of a mutation in a bac-
terium per division, then the fraction of bacteria that can mu-
tate in the (n− 1)st division cycle is

a ⋅ (number of bacteria)(number of divisions)

number of bacteria
= a ⋅ 2n−1,

since each bacterium divides. □

ii. Estimate the probability, p1, that there will be exactly one mutant in
the culture after n division cycles, if the culture size, N , is very large.
Suggestion: If D is the number of divisions that have occurred in n
division cycles, what is the probability that no mutation has occurred
in D − 1 of those divisions, and exactly one mutation occurs in one
division? What happens to this probability as N tends to infinity?

Solution: There will be exactly one mutant if there is exactly
one mutation in the D divisions and that mutation occurred
in the (n− 1)st division cycle. Thus,

p1 = P [only one mutation occurred]⋅P [mutation occurred at (n−1)st cycle]

By part (a), P [one mutation at (n− 1)st cycle] = a ⋅ 2n−1.
If D denotes the number of divisions in n cycles, then D =
N − 1, where N = 2n. Thus the probability that exactly one
mutation occurred is the probability that no mutation occurs
in N − 2 of those divisions. Thus,

P [only one mutation occurred] = (1− a)N−2.

It then follows that

p1 = (1− a)N−2 ⋅ a ⋅ 2n−1 =
aN

2
(1− a)N−2.

Writing � for aN we then have p1 =
�

2

(
1− �

N

)N−2
. There-

fore, letting N →∞, we get that

p1 ≈
�

2
e−�.

□
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(d) If the number of mutants, r, in the culture is equal to 2, two bacteria might
have mutated during the n−1 division cycle, or one bacterium might have
mutated during the n− 2 cycle giving rise to 2 mutants after cell division
in the n − 1 cycle. Estimate the probability, p2, of this event for N very
large.

Solution: p2 is the sum of the probability that two mutations
occurred in the (n − 1)–cycle, and the probability that only one
mutation occurred in the (n− 2)–cycle.
Let D = N − 1 denote the total number of divisions.
The probability that only one mutation occurred in the (n − 2)–
cycle is probability that no mutation occurred in all but three of
the divisions (the ones that will stem from the single bacterium
that mutates in that cycle), times the probability that a mutation
will occur in that cycle. The former is (1 − a)N−4 and the latter

is 2n−2a, or
N

4
a. It then follows that

P [only one mutation occurred in (n−2)–cycle] = (1−a)N−4 ⋅ aN
4
.

The probability that only two mutations occurred in the (n− 1)–
cycle is the probability that no mutations occur in all but two
of the divisions, times the probability that two mutations occur
during that cycle. The former is (1 − a)N−3 and the latter is

a2n−1 ⋅ a(2n−1 − 1), or a2 ⋅ N
2

(
N

2
− 1

)
. Thus,

P [two mutations occurred in (n−1)–cycle] = (1−a)N−3a2⋅N
2

(
N

2
− 1

)
.

We then have that

p2 = (1− a)N−4 ⋅ aN
4

+ (1− a)N−3a2 ⋅ N
2

(
N

2
− 1

)

= (1− a)N−4 ⋅ aN
4

+ (1− a)N−3
(aN)2

4

(
1− 2

N

)
Substituting � for aN we then get that

p2 =
(

1− �

N

)N−4
⋅ �

4
+
(

1− �

N

)N−3 �2

4

(
1− 2

N

)
.
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Letting N →∞, we then get that

p2 ≈
�

4
e−� +

�2

4
e−� =

1

4
�(1 + �)e−�.

□

(e) Use your results in the previous three parts to estimate the probability that
there will be 3 or more resistant bacteria in the culture after n division
cycles when the population size, N , is very large.

Solution: P [r ≥ 3] = 1− (P [r = 0] +P [r = 1] +P [r = 2]. Thus,
by parts (2)–(4),

P [r ≥ 3] = 1− po − p1 − p2 ≈ 1− e−� − �

2
e−� − 1

4
�(1 + �)e−�.

This can be rewritten as

P [r ≥ 3] ≈ 1− e−�
(

1 +
3

4
�+

1

4
�2

)
.

□


