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Solutions to Review Problems for Exam #1

1. Modeling the Spread of a Disease. In a simple model for a disease that
is spread through infections transmitted between individuals in a population,
the population is divided into three compartments pictured in Figure 1. The

S(t) - 1(t) - R(t)

Figure 1: SIR Compartments

first compartment, S(¢), denotes the set of individuals in a population that are
susceptible to acquiring the disease; the second compartment, I(¢), denotes the
set of infected individual who can also infect others; and the third compartment,
R(t), denotes the set of individuals who had the disease and who have recovered
from it; they can no longer get infected.

Assume that the total number of individuals in the population,
N =5(t)+ I(t) + R(1),

is constant. Susceptible individuals can get infected by contact with infectious
individuals and move to the infected class. This is indicated by the arrow going
from the S(t) compartment to the /(¢) compartment.

The rate at which susceptible individuals get infected is proportional to product
of number of susceptible individuals and the number of infected individuals
with constant of proportionality 5 > 0. The rate at which infected individuals
recover is proportional to the number of infected individuals with constant of
proportionality v > 0. What are the units for g and ~?

Use conservation principles to derive a system of differential equations for the
functions S, I and R, assuming that they are differentiable. Models of this type
were first studied by Kermack and McKendrick in the early 1930s.

Introduce dimensionless variables

st =2\ g = 1Y ?(t):%, and T=_, (1)

T
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for some scaling factor, 7, in units of time, in order to write the system in
dimensionless form.

Solution: Using conservation principles on each of the compartments, we ob-
tain the system of ordinary differential equations

( dS

=2 — _BSI:

dt ﬁS )

dl

U 51—, 2)
dR

— = ~l.
7 i

It follows from the equations in (2) that § has units of 1/[time X individuall,
while ~ has units of 1/time.

Next, use the change of variables in (1) and the Chain Rule to obtain from the
first equation in (2) that

ds  ds dt
dt — dt dt
_7dS
- N dt
T
= —=fB51
—BSI,
so that, using (1) again,
ds ~
— = —fpBTN si. 3
2= ®)
Similar calculations for the second equation in (2) yield
di SO
— = pTN 5i—7i; (4)
7 p g

and, for the third equation in (4),

dr ~
- = T’i. 5
yr ¥ (5)

Define the dimensionless parameter

BTN = R,, (6)
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and set
v =1,
so tat
! (7)
T=—,
v
and BN
R,=—, 8
S (8)

by virtue of (6).

Next, substitute (6) and (7) into the equations in (3), (4) and (5) to obtain the

dimensionless system
( ds ~

dr
di
dt
dr
\ dt

=)

If we stipulate from the outset that ¢ is measured in units of 1/ and s, ¢ and
r are measures in fractions of the total population, N, then the system in (9)
can be written in simpler form as

(d
d—j = —R,si;
di
d—z — Rysi—i:
dr
\ dt

= 4,
which depends on the single dimensionless parameter, R,, given in (8). U

2. Modeling Traffic Flow. Consider the initial value problem

ou , Ou

u(z,0) = f(z),
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where
g(u) = u(l —u), (11)

and the initial condition f is given by

1, if x < —1;
1
flz) = 5(1—@, if —1<z<1; (12)
0, if v > 1.

(a) Sketch the characteristic curves of the partial differential equation.
Solution: The equation for the characteristic curves is given by

dz ,

— =g (u). 13
) (13
On characteristic curves, a solution, u, to the partial differential equation
in (10) satisfies the ordinary differential equation

du

— =0,

dt
which shows that u is constant along characteristic curves. We write

u(z,t) = p(k), (14)

where (k) is the constant value of u on the characteristic indexed by k.

Using the value for u in (14), the equation for the characteristic curves in
(13) can be re—written as

X o), (15)

Solving the differential equation in (15) yields the equation for the char-
acteristic curves

z =g (e(k)t +k, (16)

where the parameter k corresponds to the value on the z—axis on which
the characteristic curves meet the r—axis.

Next, solve for k in (16) and substitute into (14) to obtain the expression

u(z,t) = ez — g'(u(z, 1))t), (17)

which gives a solution of the partial differential equation in (10) implicitly.



Math 183. Rumbos Spring 2012 5

Using the initial condition in (10), we obtain from (17) that
o(x) = f(z), forallzeR,

so that (17) can now be re—written as

u(z,t) = f(z — g (u(z,1))t). (18)

Accordingly, the equation for the characteristic curves in (16) can now be
re-written as

v =g (f(k)t+k, (19)
so that the characteristic curves will be straight lines in the xt—plane of
slope 1/¢'(f(k)) going through (k,0) for k£ € R, where ¢'(u) is obtained
from (11) as

g (u)=1-2u. (20)

For instance, using (20), (12) and (19) we get that the equations for the
characteristic curves for £ < —1 are given by

r=—t+k, fork<-1. (21)

The curves described by (21) are straight lines with slope —1 going through
(k,0), for & < —1. Some of these are pictured in Figure 2. Similarly, for

t

Figure 2: Characteristic Curves for Problem (10)

k > 1, the curves in (19) have equations

v=t+k fork>1,
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which are straight lines of slope 1 going through (k,0), for £ > 1; some of
these lines are also sketched in Figure 2.

For values of k between —1 and 1, the slopes of the lines in (19) are
given by 1/¢'(f(k)), where f(k) ranges from 1 at k = —1, to 0 at k = 1;
so, according to (20), the slopes of the lines are negative and increase in
absolute value to infty as k approaches 0. At k = 0, f(k) = 1/2, so
that ¢'(f(k)) = 0, by virtue of (20), so that the characteristic curve will
be z = 0, according to (19), or the t—axis. As k ranges from 0 to 1, the
characteristic curves fan out from the ¢—axis to the line x =t + 1. A few
of these curves are shown in Figure 2. OJ

Explain how the initial value problem can be solved in this case, and give
a formula for u(zx,t).

Solution: Since the characteristic curves do not intersect for t > 0, the
initial value problem in (10) can always be solved by traveling back along
the characteristic curves until the hit the z—axis at a point (k, 0), and then
reading the value of the initial density, u(k,0) = f(k), at that point. For
example, if the point (z,t) lies in the region z < —t — 1, we see from
Figure 2 that the characteristic curve containing the point (z,t) will meet
the z—axis at some point (k,0) with k& < —1; since, f(k) =1 for k < —1,
it follows from (18) that

u(z,t) =1, forx<—t—1, andt>0. (22)

Similarly, if > x + t, then the characteristic curve containing (z,t) will
meet the z—axis at some point (k,0) with k& > 1; since f(k) =0 for k& > 1,
it follows from (18) that

u(z,t) =0, forz>t+1, andt>0. (23)

For (z,t) lying in the region between the lines x = —t—1 and x = t+1, the
characteristic curve containing the point will meet the z—axis at a point

1
(k,0) with —1 < k < 1. Since f(k) = 5(1 — k) for those values of k, by
(12), it follows from (18) that

() = %[1 (- g )], for —t—l<z<t+l  (24)

Using (20), we can re-write (24) as

1l—a+t

u(z,t) = 5

—u(z,t)t, for —t—1<z<t+1. (25)
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Solving for u(x,t) in (25) yields

1l—xz+t

U(.’Il‘,t) = m,

for —t—1<z<t+1. (26)

Finally, putting together the results in (22), (23) and (26), we obtain the
following formula for u(z,t):

1, forx < —t —1;
l—ax+t
0, forx >t+1,
for t > 0. O

3. Age Structured Population Models. Postulate a population density, n(a,t),
which also gives the age distribution for individuals in the population; so that,
the number of individuals in the population between the ages a; and as at time

az
t is given by / n(a,t) da.

(a)

ai

Explain why n(a, t) is given in units of population divided by units of time.
Solution: Since n(a,t)Aa gives, approximately, the number of individuals
in the population with ages between a and a + Aa, and a is measured in
chronological time, it follows that the units of n are individuals in the
population per unit time. 0

Since a is a function of ¢, assuming that n is C*, we can use Chain Rule

dn
to compute the rate of change of population density at time ¢, e

Explain why
dn On On

at "ot da
Solution: Applying the Chain Rule we obtain

dn  On dt+8n da (28)
dt ot dt  Oa dt’
Since the age, a, of individuals in the population is measured in chrono-

logical time, it follows that

(27)

da_
dt
The equation in (27) follows from (28) and (29). O

1. (29)
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()

Assume that death rate for individuals of age a in the population is pro-
portional to the number of individuals at that age with constant of pro-
portionality u(a).
Use a conservation principle to derive the following partial differential
equation 5 5

0_7; + 8_Z = —u(a)n (30)
Give the characteristic curves for the equation.
Solution: At any given age, a, the conservation principle implies that

d
d_:fl = Rate of n in — Rate of n out. (31)

Since contributions from births only occur at age a = 0, we have that, for
a> 0,
Rate of n in =0, (32)

and
Rate of n out = p(a)n. (33)

Combining the equations (31), (32) and (33) yields the partial differential
equation in (30).
The equation for the characteristic curves of (30) is

da
— = 1. 34
= (34)

Solving the differential equation in (34) yields the equation for the char-
acteristic curves,
a=1t+k. (35)

Thus, the characteristic curves are straight lines of slope 1. U
Give solutions to the partial differential equation derived in the previous
part assuming that the death rate is zero for all ages. Interpret your result.
Solution: Assuming that p(a) = 0, the differential equation in (30)

on  On
— 4+ —=0. 36
ot * oa (36)
Then, along characteristic curves, n satisfies the ordinary differential equa-
tion

dn_

= =0 (37)
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It follows from (37) that n is constant along characteristic curves, so that

n(a,t) = o(k), (38)

where (k) is the constant value of n along the characteristic curve in (35)
indexed by k.

Solving for k in (35) and substituting into (38) yields

n(a,t) = p(a —1),

so that solutions to (36) are traveling waves with speed 1. The initial
population distribution simply moves forward in time. 0



