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Solutions to Exam 3 (Part II)

1. The following system of first order differential equations can be interpreted as
describing the interaction of two species with population densities x and y:

dx

dt
= rx

(
1− x

L

)
− βxy;

dy

dt
= δxy − γy,

(1)

for positive parameters r, L, β, γ and δ.

(a) Give the units of each of the parameters r, L, β, γ and δ in (1).

Answers:
r has units of 1/time;
L has units of population;
β has units of 1/(population× time);
γ has units of 1/time; and
δ has units of 1/(population× time). �

(b) What do the equations in (1) predict about the population density of each
species if the other were not present? What effect do the species have on
each other? Describe the kind of interaction that the system (1) models.

Answers: If y = 0, the x–species experiences logistic growth
with intrinsic growth rate r, and carrying capacity L.
If x = 0, then the y–species experiences exponential decay.
In the presence of the y–species, the per–capita growth rate of the
x–species,

1

x

dx

dt
= r − rx

L
− βy,

decreases with increasing y.
On the other hand, in the presence of the x–species, the per–capita
growth rate of the y–species,

1

y

dy

dt
= δx− γ,

increases with increasing x.
Hence, the system in (1) models a predator–prey interaction with
the population of density x being the prey population, and the
population of density y being the predators. �
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(c) Introduce dimensionless variables

u =
x

L
, v =

y

µ
and τ =

t

λ
(2)

to write the system in (1) in the dimensionless form
du

dτ
= u(1− u)− uv;

dv

dτ
= ρv(u− α),

(3)

where α and ρ are dimensionless parameters.

Solution: Differentiate the expression for u in (2) with respect to τ , using
the Chain Rule, to get

du

dτ
=

du

dt
· dt
dτ

=
λ

L

dx

dt
,

where we have also used the last expression in (2). Thus, using the first
equation in (1),

du

dτ
=

λ

L
·
[
rx
(

1− x

L

)
− βxy

]
= λru(1− u)− λµβuv,

where we have also used the definitions of u and v in (2). Therefore, setting

λr = 1 and λµβ = 1, (4)

We obtain that
du

dτ
= u(1− u)− uv,

which is the first equation in (3).

We proceed in a similar way to the previous calculations, this time starting
with the second equation in (2), to get

dv

dτ
=

dv

dt
· dt
dτ

=
λ

µ

dy

dt

=
λ

µ
[δxy − γy];
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so that, using the definitions of u and v in (2),

dv

dτ
= λδLuv − λγv,

which we can rewrite as

dv

dτ
= λδLv

(
u− γ

δL

)
. (5)

Setting

ρ = λδL and α =
γ

δL
, (6)

in (5) leads to the second equation in (3). �

(d) Express the scaling parameters µ and λ in (2) in terms of the parameters
r and β.

Solution: It follows from (5) that

λ =
1

r
, (7)

and

µ =
1

λβ
;

so that
µ =

r

β
. (8)

It follows from the answer to part (a) and (7) that λ has units of time;
similarly, we obtain from (8) that µ has units of population density. �

(e) Express the dimensionless parameters α and ρ in (3) in terms of the pa-
rameters r, L, δ and γ, and verify that they are dimensionless.

Solution: The second equation in (7) gives

α =
γ

δL
. (9)

Since γ has units of 1/time, δ has units of 1/time× pop, and L has units
of population, we obtain from (9) that α is dimensionless.

Next, use the first equation in (6) and (7) to get that

ρ =
δL

r
, (10)

which is dimensionless since both r and δL have units of 1/time. �
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(f) For each of the cases

(i) 0 < α < 1;

(ii) α = 1;

(iii) α > 1,

sketch the nullclines of the system (3) in the uv–plane, compute the equi-
librium points in the first quadrant, determine the nature of the stability
of each equilibrium point, and sketch some possible trajectories.

Solution:

(i) Assume that 0 < α < 1 in (3).
The u̇ = 0–nullcline for the system (2) are the lines

u = 0 (the v–axis) and u+ v = 1;

and the v̇ = 0–nullcline are the lines

u

v

1

α 1

Figure 1: Nullclines of System (3) for the case 0 < α < 1

v = 0 (the u–axis) and u = α.

These are sketched in Figure 2. We also see in the figure that there
are three equilibrium points in the first quadrant:

(0, 0), (1, 0), and (α, 1− α) . (11)

Next, we compute the linearization of the field

F (u, v) =

(
u− u2 − uv
ρuv − αρv

)
, for (u, v) ∈ R2, (12)
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at the equilibrium points, (u, v), given in (11); namely,

DF (u, v) =

(
1− 2u− v −u

ρv ρu− αρ

)
. (13)

At the equilibrium point (0, 0) obtain from (13) that

DF (0, 0) =

(
1 0
0 −αρ

)
,

which has eigenvalues λ1 = −αρ < 0 and λ2 = 1 > 0; so that, by the
Principle of Linearized Stability, the origin is a saddle point for the
system in (3) with 0 < α < 1.
At the equilibrium point (1, 0), we obtain from (13) that

DF (1, 0) =

(
−1 −1

0 ρ(1− α)

)
,

which has eigenvalues λ1 = −1 < 0 and λ2 = ρ(1 − α) > 0, for
0 < α < 1; so that, (1, 0) is a saddle point of the system (3) with
0 < α < 1.
At the equilibrium point (α, 1− α), we obtain from (13),

DF (α, 1− α) =

(
−α −α

ρ(1− α) 0

)
. (14)

The characteristic polynomial of the matrix in (14) is

p(λ) = λ2 + αλ+ ρα(1− α);

thus, the eigenvalues of the matrix in (14) are given by the expression

λ =
−α±

√
α2 − 4ρα(1− α)

2
. (15)

We consider two cases:

• 0 < α < 1 and α2 − 4ρα(1− α) < 0; this corresponds to the case

ρ >
α

4(1− α)
; (16)

and
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• 0 < α < 1 and α2−4ρα(1−α) > 0, which correspond to the case

0 < ρ 6
α

4(1− α)
. (17)

If (16) holds true, (15) yields two complex eigenvalues with nonzero

imaginary part, and real part −α
2
< 0; so that, by the Principle of

Linearized Stability, the equilibrium point (α, 1− α) is a spiral sink.
On the other hand, if (17) holds true, then (15) yields either a single,

negative eigenvalue, −α
2
, in the case

ρ =
α

4(1− α)
,

or two distinct, negative eigenvalues in the case

0 < ρ <
α

4(1− α)
.

In all of these cases, (α, 1 − α) is a sink for the system in (3) with
0 < α < 1.
Hence, if 0 < α < 1 in (1), then (α, 1−α) is an asymptotically stable
equilibrium point for the system (1). If

ρ >
α

4(1− α)
,

(α, 1− α) is a spiral sink; and, if

α < ρ 6
α

4(1− α)
,

(α, 1 − α) is a sink. Figure 2 shows a sketch of the phase portrait
of the system in (3) for the case in which (α, 1 − α) is a spiral sink.
Figure 3 shows a sketch of the phase portrait of the system in (3) for
the case in which (α, 1− α) is a sink.

(ii) Assume that α = 1 in (3). Then the system (3) becomes
du

dτ
= u(1− u)− uv;

dv

dτ
= ρv(u− 1).

(18)
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The u̇ = 0–nullcline for the system (18) are the lines

u = 0 (the v–axis) and u+ v = 1;

and the v̇ = 0–nullcline are the lines

v = 0 (the u–axis) and u = 1.

These are sketched in Figure 4. We see from the figure that the
system in (18) has equilibrium points

(0, 0) and (1, 0) (19)

in the first quadrant.
Using the linearization in (13), with α = 1, we obtain that the lin-
earization of the system in (18) at the first equilibrium point in (19)
has matrix

DF (0, 0) =

(
1 0
0 −ρ

)
,

which has eigenvalues λ1 = −ρ < 0 and λ2 = 1 > 0; so that, by the
Principle of Linearized Stability, the origin is a saddle point for the
system in (18).
Evaluation of the matrix of the linearization at the second equilibrium
point in (19) we obtain, using (13) with α = 1,

DF (1, 0) =

(
−1 −1

0 0

)
,

which is not invertible and, therefore, has λ = 0 as an eigenvalue;
consequently, the Principle of Linearized Stability does not apply in
this case. We can, however, use the directions of the field in (12),
with α = 1, outlined in Figure 5.

(iii) Assume that α > 1 in (3).
The u̇ = 0–nullcline for the system (2) with α > 1 are the lines

u = 0 (the v–axis) and u+ v = 1;

and the v̇ = 0–nullcline are the lines

v = 0 (the u–axis) and u = α.

These are sketched in Figure 6. We also see in the figure that there
are two equilibrium points in the first quadrant:

(0, 0) and (1, 0). (20)
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Using (13) we get that the matrix of the linearization of the system
in (3) at the origin is

DF (0, 0) =

(
1 0
0 −αρ

)
,

which has eigenvalues λ1 = −αρ < 0 and λ2 = 1 > 0, which shows
that (0, 0) is a saddle point, by the Principle of Linearized Stability.
Similarly, using (13) we compute the matrix of the linearization of
the system in (3) at the second equilibrium point in (20) to get

DF (1, 0) =

(
−1 −1

0 −ρ(α− 1)

)
,

which has eigenvalues λ1 = −1 < 0 and λ2 = −ρ(α − 1) < 0, since
α > 1. Thus, by the Principle of Linearized Stability, (1, 0) is a sink.
A sketch of the phase–portrait in this case is shown in Figure 7.

�

(g) For each of the cases (i), (ii) and (iii) in part (f) of this problem, describe
the different possible long–run behaviors of x and y as t→∞, and interpret
the result in terms of the populations of the two species, and in terms of
the original parameters r, L, δ and γ.

Solution:

(i) In view of the expression in (9), the case α < 1 corresponds to

γ

δL
< 1,

or
γ < δL.

In this case, according to the sketches in Figure 2 and in Figure 3, any
trajectories that starts in the positive portion on the first quadrant
in the uv–plane will tend to the equilibrium point

(α, 1− α) =
( γ
δL
, 1− γ

δL

)
where we have used (9) again; so that, by virtue of the first two
expressions in (2) and (8), if (x(t), y(t)) is any trajectory that starts
in the positive portion of the first quadrant in the xy–plane will tend
to (

γ

δ
,
r

β
− γr

δβL

)



Math 102. Rumbos Spring 2015 9

as t → ∞. Thus, the predator and prey population will coexist
limiting values

lim
t→∞

x(t) =
γ

δ
and lim

t→∞
y(t) =

r

β
− γr

δβL
.

(ii) The case α = 1 corresponds to

γ = δL.

In this case, the sketch in Figure 5 shows that, for any initial condition
starting in the positive portion of the first quadrant in the uv–plane,
all trajectories will tend to (1, 0); so that by virtue of the definitions
of u and v in (2), the density of the predator population will tend to
0 as t→∞, and the density of the prey population will tend towards
its carrying capacity, L, as t→∞.

(iii) The case α > 1 corresponds to

γ > δL.

In this case, the sketch in Figure 7 shows that, for any initial condition
starting in the positive portion of the first quadrant in the uv–plane,
all trajectories will tend to (1, 0); so that by virtue of the definitions
of u and v in (2), the density of the predator population will tend to
0 as t→∞, and the density of the prey population will tend towards
its carrying capacity, L, as t→∞, in this case as well.

�
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Figure 2: Sketch of Phase Portrait for System (3) with α = 0.5 and ρ = 2
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Figure 3: Sketch of Phase Portrait for System (3) with α = 0.75 and ρ = 0.7
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Figure 4: Nullclines of System (18)
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Figure 5: Sketch of Phase Portrait for System (18)
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Figure 6: Nullclines of System (3) with α > 1
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Figure 7: Sketch of Phase Portrait for System (3) with α = 1.5 and ρ = 5
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