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Chapter 1

Preface

All questions of interest in the sciences involve more than one variable and
functions of more than one variable. Thus, the single variable Calculus that we
have learned up to this point is very limited in its applicability to the analysis
of problems arising in the sciences. Even in the case in which the functions of
interest in some application can be assumed to be functions of a single variable
(as illustrated in the example from epidemiology to be discussed in the next
section), the fact that a problem requires more than one of those functions puts
us in the realm of multiple variables. It is for that reason that we need to learn
the concepts and methods of Multivariable Calculus.

In this course we will learn Multivariable Calculus in the context of problems
in the life sciences. Throughout these notes, as well as in the lectures and
homework assignments, we will present several examples from Epidemiology,
Population Biology, Ecology and Genetics that require the methods of Calculus
in several variables.

In addition to applications of Multivariable Calculus, we will also look at
problems in the life sciences that require applications of probability. In particu-
lar, the use of probability distributions to study problems in which randomness,
or chance, is involved, as is the case in the study of genetic mutations.
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Chapter 2

Introductory Examples

In this chapter we present two examples that will help motivate the mathemat-
ical topics that will be covered in this course. The first example is a system
of equations from Epidemiology that provides a simple model for the spread
of a contagious disease. The second example is from Population Ecology and
prescribes the interactions between predator and prey species in simple model.

2.1 Modeling the Spread of a Disease

Example 2.1.1 (A simple SIR Model). In a simple mathematical model for
a disease that is spread through infections transmitted between individuals in
a population, the population is divided into three compartments pictured in
Figure 2.1.1. The first compartment, S(t), denotes the set of individuals in the

- -S(t) I(t) R(t)

Figure 2.1.1: SIR Compartments

population that are susceptible to acquiring the disease at time t; the second
compartment, I(t), denotes the set of infected individual who can also infect
others, also at time t; and the third compartment, R(t), denotes the set of
individuals who had the disease and who have recovered from the disease at
time t.

We assume that the functions S, I and R; are differentiable functions of
time. Thus, the techniques that we learned in single variable Calculus can be
applied to these functions. We also assume that the total number of individuals
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8 CHAPTER 2. INTRODUCTORY EXAMPLES

in the population,
N = S(t) + I(t) +R(t),

is constant.
Susceptible individuals can get infected through contact with infectious indi-

viduals and move to the infected class. This is indicated by the arrow going from
the S(t) compartment to the I(t) compartment in Figure 2.1.1. In this simple
model, we assume that the individuals in compartment R(t) can no longer get
infected.

In addition to the assumptions that we have made so far, we also assume
the following:

• The rate at which susceptible individuals get infected is proportional to
product of number of susceptible individuals and the number of infected
individuals with constant of proportionality β > 0. We can write this in
symbols as

Rate of Infection = βSI.

• The rate at which infected individuals recover is proportional to the num-
ber of infected individuals with constant of proportionality γ > 0. We can
write this in symbols as

Rate of Recovery = γI

We would like to understand the flow of individuals from one compartment
to another according to the flow arrows pictured in Figure 2.1.1 and the as-
sumptions that we have stated so far. One way to understand the flows is to
look at the rates of change of the numbers of individuals in each compartment.
For instance, the rate of change of the number of individuals in the infected
compartment,

I ′(t) or
dI

dt
,

has to be accounted for by the rate at which individuals enter the compartment
from the susceptible class by way of infections, and the number of individuals
that leave the class by way of recovery. We can express this mathematically by
means of the equation

dI

dt
= βSI − γI (2.1)

The equation in (2.1) is an example of what is known as a conservation principle;
it expresses the fact that, since the total number of individuals in the population
is to remain constant, the rates of change of the number of individuals in a given
compartment have to be accounted for by the rates at which individuals enter
or leave a given class, or compartment.

The expression in (2.1) is also an example of a differential equation. Similar
considerations lead to two additional differential equations

dS

dt
= −βSI (2.2)
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and
dR

dt
= γI. (2.3)

Putting the differential equations in (2.1), (2.2) and (2.3) together leads to the
following system of differential equations:

dS

dt
= −βSI;

dI

dt
= βSI − γI;

dR

dt
= γI.

(2.4)

The system in (2.4) is known in the literature as the Kermack–McKendrick SIR
model. It first appeared in the scientific literature in 1927.

One of the goals of this course is to develop some of the concepts from
Multivariable Calculus that will help us in the analysis of systems like the one
in (2.4). An examination of the right–hand side of the equations in (2.4) reveals
that the quantities S(t), I(t) and R(t) have to be studied simultaneously, since
their rates of change are intertwined. Thus, it makes sense to consider the triple

(S(t), I(t), R(t)), for t in some interval of time. (2.5)

The expression in (2.6) defines a vector–valued function of a single variable,
t. As t varies, the image of the function defined in (2.6) traces a curve in three
dimensional space, as pictured in Figure 2.1.2. This curve is an example of a
parametrized curve, an this is where we begin our study of the topics from
Multivariable Calculus in this course.

2.2 Preliminary Analysis of a Simple SIR Model

In many cases, analysis of two dimensional systems suffices in many applications.
We illustrate this in the following example in which perform a preliminary anal-
ysis of the SIR model developed in Example 2.1.1.

Example 2.2.1 (Preliminary Analysis of a Simple SIR Model). We begin with
the observation that the system in (2.4) that the total size, N , of the population
is constant. Thus, from the equation

S(t) + I(t) +R(t) = N, for all t,

we can solve for R(t) in terms of S(t) and I(t) to get

R(t) = N − S(t)− I(t), for all t.
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I

R

S

(S(t), I(t), R(t))

Figure 2.1.2: Curve in SIR–Space

Thus, if we can determine the number of susceptible and infectious individuals
at any time t, we’ll be able to determine the number of recovered individuals at
any time t. Hence, it suffices to study the two–dimensional system

dS

dt
= −βSI;

dI

dt
= βSI − γI.

(2.6)

We would like to determine the pairs (S(t), I(t)), which can be pictured as
points in the SI–plane, whose components satisfy the equations in (2.6).

Suppose that initially (at time t = 0) there are Io infectious individuals and
So susceptible individuals. We would like to determine S(t) and I(t) for t > 0.

The initial point (So, Io) is shown in Figure 2.2.3, as well as a possible
solution curve. In the rest of this example we will see how to justify the shape
of the curve drawn in Figure 2.2.3.

The system of equations in (2.6) gives information about the derivatives

S′(t) = −βS(t)I(t) (2.7)

and

I ′(t) = βS(t)I(t)− γI(t), (2.8)

of the quantities S and I, respectively. It follows from (2.7) that, in the case
in which, S and I are positive, S′(t) < 0; so that, the number of susceptible
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S

I

Io

SoS

I ′(t) > 0I ′(t) < 0

Figure 2.2.3: Curve in the SI–Plane

individuals in the population can only decrease. On the other, rewriting (2.8)
as

I ′(t) = βI(t)

[
S(t)− γ

β

]
, (2.9)

we see that the answer to the question of whether the number of infected indi-
viduals will increase or decrease will depend on whether or not S is bigger than
the value

S =
γ

β
. (2.10)

The value of S is shown in Figure 2.2.3 for the case in which

So > S. (2.11)

In this case, for values of t for which S < S(t) 6 So, I
′(t) > 0, as indicated

in Figure 2.2.3. Thus, the number of infected individuals will increase, and
therefore the disease will spread in this case. Note also that, in the case in
which (2.11), the number of infected individuals will increase to a largest value
at a time t for which I ′(t) = 0 (see Figure 2.2.3). The number of infectious
individuals reaching a maximum value indicates an epidemic. After reaching
the maximum value, the number of infectious individuals begins to decrease
because, according to (2.9) and (2.10), S(t) < S implies that I ′(t) < 0, as
shown in Figure 2.2.3.

On the hand other hand, in the case in which

So < S, (2.12)

S(t) < S for all t > 0; so that, according to (2.9) and (2.10), I ′(t) < 0 for all
t > 0 and, therefore, the number of infected individuals will decrease from Io
and the disease will not spread.

Finally, observe that, in view of (2.10), the inequality in (2.11) can be rewrit-
ten as

So >
γ

β
,
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from which we get that
βSo
γ

> 1. (2.13)

The expression on the left–hand side of the inequality in (2.13) is usually denoted
by Ro, and is called the reproduction number. It is a very important number
in epidemiology. When it can be computed, or estimated, Ro provides important
information that can be used to determine whether a given disease will spread
or not. In particular, since the inequality in (2.13) is equivalent to (2.11), we
see that, if Ro > 1, the disease will spread. On the other hand, if Ro < 1, it
follows from (2.12) that the disease will not spread.

2.3 A Predator–Prey System

Examples of applications that are amenable to the two–dimensional analysis
illustrated in the previous section are provided by systems that model the inter-
action of two species that live in the same ecosystem. The simplest of those types
of systems is the following predator–prey system known as the Lotka–Volterra
system.

Example 2.3.1 (Lotka–Volterra System). Let x(t) and y(t) denote the popula-
tion densities of two species living in the same ecosystem at time t. We assume
that the x and y are differentiable functions of t. Assume also that the popula-
tion of density y depends solely on the density of the species of density x. We
may quantify this by prescribing that, in the absence of the species of density
x, the per–capita growth rate of species of density y is a negative constant:

y′(t)

y(t)
= −γ, for all t with x(t) = 0, (2.14)

for some positive constant γ. We will see later in this course that (2.14) implies
that the population of density y will eventually go extinct in the absence of the
species of density x.

On the other hand, in the absence of the species of density y, the species of
density x will experience unlimited growth according to

x′(t)

x(t)
= α, for all t with y(t) = 0, (2.15)

where α is a positive constant.
When both species are present, the per–capita growth rate of the species of

population density x is given by

x′(t)

x(t)
= α− βy, for all t, (2.16)

where β is a positive constant, and the species of density y has a per–capita
growth rate given by

y′(t)

y(t)
= −γ + δx, for all t, (2.17)
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for some positive constant δ.
The equations in (2.16) and (2.17) describe a predator–prey interaction in

which predator species, y, relies solely on the prey species, x, for sustenance,
while the only factor that can hinder the growth of the prey species, x, is the
presence of the predator species y.

The equations in (2.16) and (2.17) form a system of differential equations,
dx

dt
= αx− βxy;

dy

dt
= δxy − γy,

(2.18)

known as the Lotka–Volterra system. We will analyze this system later on in
these notes.
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Chapter 3

Parametrized Curves

The curve pictured in Figure 2.1.2 is an example of a parametrized curve in
three–dimensional space. It is the image of a vector–valued function of a single
variable. In the example discussed in the previous Section 2.1, this function is
given by

(S(t), I(t), R(t)), (3.1)

for t in some interval of time, J . In this case, we call t a parameter, and the
curve traced by the points (3.1) is a parametrized curve in three dimensions.

In many applications, phenomena can be described by parametrized curves
in two dimensions. We saw instances of this in Example 2.2 and in the Lotka–
Volterra system derived in Section 2.3. For that reason, we begin this chapter
by studying parametrized curves in the plane.

3.1 Parametrized Curves in the Plane

The set of points (S(t), I(t)) discussed in Example 2.2.1 trace out a curve in
the SI–place, pictured in Figure 2.2.3, as the parameter t varies. The solutions
(x(t), y(t)) of the Lotka–Volterra system in (2.18) trace out curves in the xy–
plane as t varies. In both of these instances we obtain a parametrized curves in
the plane.

Definition 3.1.1 (Parametrized Curves in the xy–plane). Let J denote an
interval of real numbers and x : J → R and y : J → R denote functions that
are differentiable1 in J . The set of points, C, in the xy–place with coordinates
(x(t), y(t)) for t ∈ J is called a parametrized curve.

1The function x : J → R is differentiable at t ∈ J means that lim
h→0

x(t + h)− x(t)

h
exists.

This limit is usually denoted by x′(t) and, geometrically, it gives the slope of the tangent line
to the graph of x = x(t) at the point (t, x(t)). We say that x is differentiable in J if x is
differentiable at every t in J .

15
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Example 3.1.2. Let
x(t) = et, for all t ∈ R,

and
y(t) = e−t, for all t ∈ R,

and
C = {(x(t), y(t)) | t ∈ R}.

Then, C is a parametrized curve.
In this example we see how to sketch C.
Observe that x(t) > 0 and y(t) > 0 for all t because the exponential function

is always positive (i.e. ea > 0 for all a ∈ R); thus, the curve C must lie in the
first quadrant. Observe also that

x(t) · y(t) = 1, for all t,

so that C must be the portion of the parabola

xy = 1,

that lies in the first quadrant (see Figure 3.1.1).

x

y

(1, 1)

Figure 3.1.1: Sketch of C in Example 3.1.2

Note the (x(0), y(0)) = (1, 1); so, the point (1, 1) is on the curve C; this
point is shown in the picture in Figure 3.1.1.

Definition 3.1.3 (Parametrizations). Give a curve, C, in the plane, we say
that C is parametrizable if we can find a parametrization, (x(t), y(t)) for t ∈ J ,
where J is an interval in R, such that

C = {(x(t), y(t)) | t ∈ J}.

In what follows we provide several examples of curves in the plane and their
parametrizations.
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Example 3.1.4 (Points). Given a point, (xo, yo), in the plane, the constant
functions

x(t) = xo, for all t ∈ R,
and

y(t) = yo, for all t ∈ R,
form a parametrization of the point (xo, yo).

Example 3.1.5 (Lines). Given a point, P (xo, yo), in the plane, and a direction

vector −→v = âi + bĵ, we would like to construct a parametrization of the line,
L, through the point P in the direction of the vector −→v . An arbitrary point

x

y

P

−→v

L
−→r (t)

O

Figure 3.1.2: Sketch of Line L in Example 3.1.5

−→r (t) = (x(t), y(t)) on the line L can be reached from the origin, O, by first

going from the origin to the point P along the vector
−−→
OP shown in Figure 3.1.5,

and then going from the point P along the direction of −→v through a scalar
multiple, t−→v , of the vector −→v . This is expressed as the vector equation

−→r (t) =
−−→
OP + t−→v . (3.2)

The expression in (3.2) is the vector–parametric equation of the line L. As
t varies over all real values, −→r (t) traces every point on L. For instance, when

t = 0, −→r (0) =
−−→
OP determines the point P (xo, yo); when t = 1, −→r (1) =

−−→
OP +−→v

is the point at the tip of the vector −→v , which lies on the line L. when its tail is
at the point P .

The vector
−−→
OP can be written as xoî+ yoĵ, or as

−−→
OP = (xo, yo). (3.3)

Similarly, the vector −→v = âi+ bĵ can also be written as −→v = (a, b). The scalar
multiple, t−→v , of −→v is then

t−→v = t(a, b) = (ta, tb),
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or
t−→v = (at, bt). (3.4)

Combining the expressions in (3.2), (3.3) and and (3.4) yields

(x(t), y(t)) = (xo, yo) + (at, bt),

or
(x(t), y(t)) = (xo + at, yo + bt), (3.5)

where we have used vector addition in the right–hand side of (3.5).
Equating corresponding components of the vectors in (3.5) yields the para-

metric equations of the line L:{
x = xo + at;
y = yo + bt,

for t ∈ R.

Example 3.1.6 (Line Segments). Consider a pair of distinct points P (xo, yo)
and Q(x1, y1) in the xy–plane. We would like to construct a parametrization of

x

y

P

Q

O

Figure 3.1.3: Sketch of Line Segment in Example 3.1.6

the directed line segment connecting the point P to the point Q.

We first construct the vector −→v =
−−→
PQ as follows

−−→
PQ = (x1 − xo, y1 − yo),

or −−→
PQ = (x1 − xo)̂i+ (y1 − yo)ĵ

We first parametrize the line segment from P to Q as we parametrized the line
L in Example 3.1.5 by means of the vector–parametric equation in equation
(3.2),

−→r (t) =
−−→
OP + t

−−→
PQ, for 0 6 t 6 1, (3.6)
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except that this time t has to be restricted to 0 6 t 6 1. A value of t = 0 in
(3.6) corresponds to the point P and a value of t = 1 corresponds to the vector

−→r (t) =
−−→
OP +

−−→
PQ,

which locates the point Q (see the sketch in Figure 3.1.3).
From the vector–parametric equation in (3.6) we obtain the parametric equa-

tions {
x = xo + (x1 − xo)t;
y = yo + (y1 − yo)t,

for 0 6 t 6 1,

for the segment connecting P to Q.

Example 3.1.7. Find a parametrization for the directed line segment from
P (5, 3) to Q(1, 1).

Solution: First, compute the direction vector −→v =
−−→
PQ to get

−→v = (1− 5, 1− 3) = (−4,−2).

Then, the parametric equations of the line segment are{
x = 5− 4t;
y = 3− 2t,

for 0 6 t 6 1,

A sketch of the segment is shown in Figure �

x

y

Q

P

O

Figure 3.1.4: Sketch of Line Segment from (5, 3) to (1, 1)

Example 3.1.8 (Circles). Let C denote the circle in the xy–plane of radius
r > 0 and centered at the point (xo, yo). Then, every point (x, y) in C is at a
distance of r from the point (xo, yo). Thus,

(x− xo)2 + (y − yo)2 = r2. (3.7)
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Divide both sides of the equation in (3.7) by r2 to obtain

(x− xo)2

r2
+

(y − yo)2

r2
= 1,

or (
x− xo
r

)2

+

(
y − yo
r

)2

= 1. (3.8)

Recalling the trigonometric identity

cos2 t+ sin2 t = 1, for all t ∈ R,

we can set
x− xo
r

= cos t and
y − yo
r

= sin t,

or
x− xo = r cos t and y − yo = r sin t;

so that, the equations {
x = xo + r cos t;
y = yo + r sin t,

(3.9)

give a parametrization of C provided the values of the parameter t are confined
to an interval of real numbers of length 2π; for example, 0 6 t < 2π, or −π <
t 6 π. Observe that the direction given by the parametrization in (3.9) is in the
counterclockwise sense (see Figure 3.1.5). To see why this assertion is true, note

x

y

(xo, yo)

r

−→r (0)

−→r (π/2)

Figure 3.1.5: Sketch of Circle of Radius r and Center (xo, yo)

that −→r (0) = (xo+ r, yo) and, a quarter of the time later, −→r (π/2) = (xo, yo+ r).
Observe that the choice

x− xo
r

= sin t and
y − yo
r

= cos t,
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will also satisfy the equation of the circle of radius r around (xo, yo) in (3.8).
Thus, the set of equations {

x = xo + r sin t;
y = yo + r cos t,

(3.10)

for 0 6 t < 2π is also a parametrization of the circle C given by the equation
(3.7). However this parametrization is oriented in the clockwise sense (see Figure
3.1.6).

x

y

(xo, yo)

r

−→r (π/2)

−→r (0)

Figure 3.1.6: Sketch of Circle Parametrized by (3.10)

Example 3.1.9. Give a parametrization for the semicircle, C, from the point
P (0, 2) to the point Q(0, 0).

Solution: Figure 3.1.7 shows a sketch of C. We use the parametrization in
(3.10) with xo = 0, yo = 1 and r = 1, with t restricted to 0 6 t 6 π, to get{

x = sin t;
y = 1 + cos t,

for 0 6 t 6 π.

�

Example 3.1.10 (Ellipses). The graph of the equation

(x− xo)2

a2
+

(y − yo)2

b2
= 1 (3.11)

is an ellipse with center (xo, yo) and vertices at (xo−a, yo), (xo+a, yo), (xo, yo−b)
and (xo, yo + b). A possible sketch is shown in Figure 3.1.8 As we did when we
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x

y

P

Q

Figure 3.1.7: Sketch of Semicircle C in Example 3.1.9

x

y

(xo, yo)

Figure 3.1.8: Sketch of Ellipse in Example 3.1.10

constructed parameterizations for circles, we can use the trigonometric identity

cos2 t+ sin2 t = 1, for all t ∈ R

and set
x− xo
a

= cos t and
y − yo
b

= sin t,

to get
x− xo = a cos t and y − yo = b sin t;

so that, the equations{
x = xo + a cos t;
y = yo + b sin t,

for 0 6 t < 2π, (3.12)

parametrize the ellipse given by (3.11). As was the case for the circle, the
parametrization in (3.12) is oriented in the counterclockwise sense as shown in
Figure 3.1.8. Similarly, a parametrization in the clockwise sense is given by the
equations {

x = xo + a sin t;
y = yo + b cos t,

for 0 6 t < 2π, (3.13)
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has a clockwise orientation.

Example 3.1.11. Let C denote the portion of the ellipse given by the graph
of the equation

4x2 + y2 = 4, (3.14)

in the first quadrant of the xy–plane, from the point P (0, 2) to the point Q(1, 0).
Give a parametrization for C.

Solution: Figure 3.1.9 shows a sketch of C.

x

y

P

Q

Figure 3.1.9: Sketch of Curve C in Example 3.1.11

Divide both sides of the equation in (3.14) by 4 to get

x2 +
y2

4
= 1. (3.15)

We see from (3.15) that the ellipse is centered at the origin (so that, xo = yo = 0)
with a = 1 and b = 2. Since the orientation is in the clockwise sense (see sketch
in Figure 3.1.9), we use the parametric equations in (3.13) with t restricted to
go from 0 to π/2: {

x = sin t;
y = 2 cos t,

for 0 6 t < π/2. (3.16)

�

Example 3.1.12 (Graphs of Functions). Let f denote a differentiable function
of a single variable defined over some open interval containing a and b, where
a < b. We let C denote the portion of the graph of y = f(x) for a 6 x 6 b; that
is,

C = {(x, f(x)) ∈ R2 | a 6 x 6 b}.

Figure 3.1.10 illustrates what may happen in a general situation. The curve C
is the portion of the graph of f that lies between the points P and Q in Figure
3.1.10.
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x

y

a b

P

Q

Figure 3.1.10: Sketch of Graph of y = f(x)

In order to paremetrize C, we can consider x as a parameter and set

x = t;

so that

y = f(t).

Hence, the equations {
x = t;
y = f(t),

for a 6 t 6 b, (3.17)

will parametrize C.

Example 3.1.13. Let C denote the portion of the parabola given by the equa-
tion

y = x2

from the point P (−1, 1) to the point (2, 4).

Give a parametrization for C.

Solution: A sketch of C is shown in Figure 3.1.11.

Use the equations in (3.17) with f(x) = x2, a = −1, and b = 2 to get{
x = t;
y = t2,

for − 1 6 t 6 2.

�

In the next example with construct another parametrization of the curve in
Example 3.1.11.
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x

y

P

Q

Figure 3.1.11: Sketch of Graph of y = x2 from x = −1 to x = 2

Example 3.1.14. Let C denote the portion of the ellipse given by the graph
of the equation

4x2 + y2 = 4, (3.18)

in the first quadrant of the xy–plane, from the point P (0, 2) to the point Q(1, 0).
Give a parametrization for C.

Solution: A sketch of the graph of C is shown in Figure 3.1.9.
Observe that C can also be realized as the graph of a function f that can

be obtained by solving the equation in (3.18) for y. We obtain

f(x) = 2
√

1− x2, for − 1 6 x 6 1.

Thus, the equations{
x = t;

y = 2
√

1− t2, for 0 6 t 6 1,

also constitute a parametrization of the curve C. �

3.2 Differentiable Paths

Given functions x and y defined on an open interval J , the function −→r : J → R2

given by
−→r (t) = (x(t), y(t)), for all t ∈ J,

is called a path. If both x and y are differentiable, then −→r is said to be a
differentiable path and its derivative is given by

−→r ′(t) = (x′(t), y′(t)), for all t ∈ J.
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Chapter 4

Vector Fields

In this course, we will focus on two–dimensional vector fields. These are func-

tion,
−→
F , from a domain in R2 to R2; we write,

−→
F : D → R2,

where D is the domain of the vector field.
In the first section of this chapter, we present a few examples of two–

dimensional vector fields and their geometric representation and interpretations,
and in the following section we present the concept of the flow of a field, which
relates vector fields to that paths and parametrized curves that we studied in
previous sections.

4.1 Examples of Vector Fields

We begin with examples in which the domain, D, of a vector field,
−→
F , is the

entire xy–plane. We then have that

−→
F : R2 → R2.

4.2 The Flow of a Vector Field

27
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Chapter 5

Real Valued Functions of
Two Variables
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Chapter 6

Linear Vector Fields in Two
Dimensions

6.1 Definition of a Linear Vector Fields

A function F : R2 → R2 is said to be a linear vector field if it is given by an
expression of the form

F

(
x
y

)
=

(
ax+ by
cd+ dy

)
, for all

(
x
y

)
∈ R2, (6.1)

where a, b, c and d are real numbers (constants).

We note that, starting in this chapter, we adopt the convention of using
columns to denote vectors in in R2. We are also dropping the arrow above the
symbol to denote names of vectors. The context will make it clear when we
are talking about vectors and not numbers. We shall also refer to numbers as
“scalars” to distinguish them from vectors.

Examples of linear vector fields are

F

(
x
y

)
=

(
2x
−y

)
, for all

(
x
y

)
∈ R2,

and

F

(
x
y

)
=

(
2x+ y
x− y

)
, for all

(
x
y

)
∈ R2.

The vector field associated with the Lotka–Volterra system, namley,

F

(
x
y

)
=

(
αx− βxy
βxy − γy

)
, for all

(
x
y

)
∈ R2

where α, β and γ are real constants, is not linear (Why?).

31
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Another example of a two–dimensional vector field that is not linear is pro-
vided by

F

(
x
y

)
=

(
x2 − y2

2xy

)
, for all

(
x
y

)
∈ R2.

6.2 Matrices and Matrix Algebra

The general form of linear field given in (6.1) can be written in a more compact
way by using matrix notation. In this section we discuss definitions of matrices
and matrix products and present some of their properties.

A matrix is an array of numbers organized in rows of and columns. An m×n
matrix consists m rows and n columns. In this course we will deal only with
the cases in which m and n are 1 or 2.

A 2× 1 matrix is a column vector(
x
y

)
, (6.2)

2 rows and 1 column. We will use column vectors of the form in (6.2) to represent
vectors in R2.

A 1× 2 matrix is a row vector of the form(
a b

)
. (6.3)

Denote the column vector in (6.2) by v and the row vector in (6.3) by R.

Definition 6.2.1 (Row–Column Product). The row-column product, Rv, is
the scalar obtained by

Rv =
(
a b

)(x
y

)
= ax+ by. (6.4)

We note two things about the product in (6.4):

(i) it is the first entry in the definition of the linear vector field in (6.1);

(ii) It is the dot product of the vectors −→w = âi+ bĵ and −→v = x̂i+ yĵ.

Writing

w =

(
a
b

)
, (6.5)

the transpose of the column vector w, denoted by wT , is the column vector
obtained from w in (6.5) as follows

wT =

(
a
b

)T
=
(
a b

)
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Thus, given two column vectors

w =

(
a
b

)
and v =

(
x
y

)
,

we can from the row–column product of wT and v to get

wTv =
(
a b

)(x
y

)
= ax+ by,

which is the dot product of the vectors w and v in R2. We then have that

w · v = wTv.

In general, a 2× 2 matrix is an array, A, of the form

A =

(
a b
c d

)
, (6.6)

where a, b, c and d are real numbers.
The matrix A in (6.6) is made up of two rows

R1 =
(
a b

)
and R2 =

(
c d

)
,

or two columns

v1 =

(
a
c

)
and v2 =

(
b
d

)
.

We can therefore write

A =

(
R1

R2

)
, (6.7)

or

A =
[
v1 v2

]
.

We can use the row–column product defined in Definition 6.2.1 to define the
product of a matrix and a vector.

Definition 6.2.2 (Product of Matrix and a Vector). Given a 2 × 2 matrix A
and a (column) vector v, the product, Av, is the column vector obtained as
follows: Write the matrix A in terms of its rows as in (6.7); then, compute

Av =

(
R1

R2

)
v =

(
R1v
R2v

)
(6.8)

Thus, if A is as given in (6.6) and v is the column vector given in (6.2), then

Av =

(
a b
c d

)(
x
y

)
=

(
ax+ by
cd+ dy

)
. (6.9)
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Comparing (6.1) and (6.9) we see that the linear vector field in (6.1) can be
written as multiplication by the 2 × 2 matrix A given in (6.6). We then have
that

F

(
x
y

)
= A

(
x
y

)
, for all

(
x
y

)
∈ R2. (6.10)

According to (6.10), every linear vector field F : R2 → R2 has a 2 × 2 matrix,
A, associated with it.

Example 6.2.3. The matrix associated with the linear field F : R2 → R2 de-
fined by

F

(
x
y

)
=

(
y
−4x

)
, for

(
x
y

)
∈ R2,

is

A =

(
0 1
−4 0

)
.

Definition 6.2.4 (Matrix Multiplication). Given 2×2 matrices A and B, write
the matrix A in terms of its rows as in (6.7), and write B in terms of its columns,

B =
[
v1 v2

]
.

The matrix product AB is the 2× 2 matrix obtained as follows

AB =

(
R1

R2

)[
v1 v2

]
=

(
R1v1 R1v2

R2v1 R2v2

)
. (6.11)

Example 6.2.5. Let A denote the 2× 2 matrix

A =

(
3 −1
5 −3

)
, (6.12)

and B the 2× 2 matrix

B =

(
1 1
5 1

)
. (6.13)

Then, using the formula in (6.11), we compute

AB =

(
3 −1
5 −3

)(
1 1
5 1

)
=

(
−2 2
−10 2

)
. (6.14)

Example 6.2.6. Let A and B be as given in (6.12) and (6.13), respectively.
We can also form the matrix product BA:

BA =

(
1 1
5 1

)(
3 −1
5 −3

)
=

(
8 −4
20 −8

)
. (6.15)
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Comparing the results in (6.14) and (6.15) we see that

AB 6= BA; (6.16)

thus, matrix multiplication is not commutative.

In order to obtain (6.16), we have used the notion of matrix equality.

Definition 6.2.7 (Matrix Equality). Two matrices are said to be equal if and
only if corresponding entries in the matrix are the same.

Example 6.2.8. Let A and B denote the 2× 2 matrices given by

A =

(
1 −1
−2 2

)
and

B =

(
1 3
1 3

)
.

Then,

AB =

(
1 −1
−2 2

)(
1 3
1 3

)
=

(
0 0
0 0

)
. (6.17)

Definition 6.2.9 (Zero Matrix). The 2 × 2 matrix whose entries all all 0 is
called the zero 2× 2 matrix. We will denote it by the symbol O; so that,

O =

(
0 0
0 0

)
.

Example 6.2.10. Let A and B denote the 2× 2 matrices given by

A =

(
0 −2
1 −3

)
and

B =

(
−3/2 1
−1/2 0

)
.

We compute

AB =

(
0 −2
1 −3

)(
−3/2 1
−1/2 0

)
=

(
1 0
0 1

)
.

We also compute

BA =

(
−3/2 1
−1/2 0

)(
0 −2
1 −3

)
=

(
1 0
0 1

)
.
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Definition 6.2.11 (Identity Matrix). The 2× 2 matrix(
1 0
0 1

)
is called the 2× 2 identity matrix. We will denote it by the symbol I; so that,

I =

(
1 0
0 1

)
.

For the matrices A and B in Example 6.2.10, we saw that

AB = BA = I.

When this happens we say that the matrix A is invertible.

Definition 6.2.12 (Invertible Matrix). A 2×2 matrix A is said to be invertible
if there exists a 2× 2 matrix B such that

AB = BA = I. (6.18)

If (6.18) holds true, we also say that B is the inverse of A and denote it by A−1;
so that,

AA−1 = A−1A = I.

Definition 6.2.13 (Matrix Addition). Given two matrices, A and B, of the
same size, the matrix A + B is obtained by adding corresponding entries. We
have three cases two consider.

(i) Adding two 2× 2 matrices.

Let A and B be 2× 2 matrices given by

A =

(
a1 b1
c1 d1

)
and B =

(
a2 b2
c2 d2

)
,

respectively. The sum A+B is defined by

A+B =

(
a1 + a2 b1 + b2
c1 + c2 d1 + d2

)
.

(ii) Adding two column–vectors in R2.

Let v1 and v2 be vectors in R2 given by

v1 =

(
x1
y1

)
and v2 =

(
x2
y2

)
,

respectively. The vector sum v1 + v2 is defined by

v1 + v2 =

(
x1 + x2
y1 + y2

)
.
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(iii) Adding two row–vectors in R2.

Let R1 and R2 be row–vectors in R2 given by

R1 =
(
a1 b1

)
and R2 =

(
a2 b2

)
,

respectively. The sum R1 +R2 is the row–vector defined by

R1 +R2 =
(
a1 + a2 b1 + b2

)
.

Remark 6.2.14. The addition of a column–vector and a row vector is not
defined, neither is the addition of a 2× 2 matrix and a vector.

Example 6.2.15. Let A and B denote 2× 2 matrices given by

A =

(
0 −2
1 −3

)
and B =

(
0 2
−1 3

)
,

respectively. Then
A+B = O,

where O is the 2 × 2 zero matrix. We say that B is the additive inverse of A
and write

B = −A.

Definition 6.2.16 (Scalar Multiplication). Given a matrix A and a real number
t, the matrix tA is obtained by multiplying every entry in the matrix by t. We
have three cases two consider.

(i) Scalar multiple of a 2× 2 matrix.

Let A be the 2× 2 matrix given by

A =

(
a b
c d

)
.

The matrix tA is defined by

tA =

(
ta tb
tc td

)
.

(ii) Scalar multiple of a column–vector in R2.

Let v be a vector in R2 given by

v =

(
x
y

)
.

The vector tv is defined by

tv =

(
tx
ty

)
.
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(iii) Scalar multiple of a row–vector in R2.

Let R be a row–vector in R2 given by

R =
(
a b

)
.

The row–vector tR is defined by

tR =
(
ta tb

)
.

Example 6.2.17. Let A denote the 2× 2 matrix given by

A =

(
0 −2
1 −3

)
.

Compute A2 + 3A+ 2I, where I is the 2× 2 identity matrix.

Solution: First, we compute

A2 =

(
0 −2
1 −3

)(
0 −2
1 −3

)
=

(
−2 6
−3 7

)
.

Then

A2 + 3A+ 2I =

(
−2 6
−3 7

)
+ 3

(
0 −2
1 −3

)
+ 2

(
1 0
0 1

)

=

(
−2 6
−3 7

)
+

(
0 −6
3 −9

)
+

(
2 0
0 2

)

=

(
0 0
0 0

)
,

so that
A2 + 3A+ 2I = O,

the 2× 2 zero matrix. �

6.2.1 Properties of Matrix Products

In this section we list a few of the properties of the matrix and vector operations
that have been defined so far. These operations will be used in various matrix
calculations in these notes.

Proposition 6.2.18 (Distributive Properties).

(i) For 2× 2 matrices A, B and C,

A(B + C) = AB +AC.
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(ii) For 2× 2 matrices A, B and C,

(A+B)C = AC +BC.

(iii) For a 2× 2 matrix A and column–vectors v1 and v2 in R2,

A(v1 + v2) = Av1 +Av2.

(iv) For 2× 2 matrices A and B, and a column–vector v in R2,

(A+B)v = Av +Bv.

(v) For a scalar t and column–vectors v1 and v2 in R2,

t(v1 + v2) = tv1 + tv2.

(vi) For a scalars t and r, and a column–vector v in R2,

(t+ r)v = tv + rv.

Proposition 6.2.19 (Associative Properties).

(i) For 2× 2 matrices A, B and C,

A(BC) = (AB)C.

(ii) For a 2× 2 matrix A, a column–vector v, and a scalar t,

A(tv) = tAv

Remark 6.2.20. The properties in Proposition 6.2.18 and 6.2.19 can be derived
by using the definition of the operations in Definitions 6.2.4, 6.2.13 and 6.2.16.

Example 6.2.21. In Example 6.2.17 we saw that the matrix

A =

(
0 −2
1 −3

)
. (6.19)

satisfies the equation
A2 + 3A+ 2I = O. (6.20)

We can rewrite (6.20) as
A2 + 3A = −2I. (6.21)

We can then use the distributive properties to rewrite the left–hand side in
(6.21) to get

A(A+ 3I) = −2I, (6.22)
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where we have also used the fact that A = AI.

Next, multiply on both sides of (6.22) by the scalar −1

2
, and use the dis-

tributive and associative properties, to get

A

[
−1

2
(A+ 3I)

]
= I. (6.23)

It follows from (6.23) and Definition 6.2.12 that the matrix A given in (6.19) is
invertible, and its inverse is given by

A−1 = −1

2
(A+ 3I),

or

A−1 = −1

2
A− 3

2
I

= −1

2

(
0 −2
1 −3

)
− 3

2

(
1 0
0 1

)

=

(
0 1

−1/2 3/2

)
+

(
−3/2 0

0 −3/2

)
;

so that

A−1 =

(
−3/2 1
−1/2 0

)
. (6.24)

In the next section we will see another way to obtain the result in (6.24).

6.2.2 Invertible Matrices

In this section we will see that the 2× 2 matrix

A =

(
a b
c d

)
(6.25)

has an inverse provided that ad− bc 6= 0.
The expression ad − bc is called the determinant of the matrix A in (6.25)

is called the determinant of the matrix A and will denoted by det(A). We then
have that

det(A) = det

(
a b
c d

)
= ad− bc. (6.26)

Assume that det(A) 6= 0 and look for a 2× 2 matrix B, given by

B =

(
x z
y w

)
, (6.27)

where x, y, z and w are unknowns to be determine shortly, such that

AB = I, (6.28)
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the 2× 2 identity matrix, or(
a b
c d

)(
x z
y w

)
=

(
1 0
0 1

)
,

or (
ax+ by az + bw
cx+ dy cz + dw

)
=

(
1 0
0 1

)
. (6.29)

It follows from (6.29) that (6.28) is equivalent to the system of equations
ax+ by = 1
cx+ dy = 0
az + bw = 0
cz + dw = 1

(6.30)

We first consider the case in which

a 6= 0 and c 6= 0. (6.31)

In this case, we can solve the second equation in (6.30) for x to get

x = −d
c
y, (6.32)

and substitute into the first equation in (6.30) to get

−ad
c
y + by = 1,

which can be solved for y to yield

y = − c

ad− bc
,

or
y = − c

det(A)
. (6.33)

Combining (6.34) and (6.32) we get that

x =
d

det(A)
. (6.34)

Similarly, if (6.31) is true, then we can solve the third equation in (6.30) for z
to get

z = − b
a
w. (6.35)

Substituting (6.35) into the last equation in (6.30) then yields

−bc
a
w + dw = 1,
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which can be solved for w to yield

w =
a

det(A)
. (6.36)

Combining (6.35) and (6.36) then yields

z = − b

det(A)
. (6.37)

It follows from (6.27), (6.28), (6.34), (6.34), (6.37) and (6.36) that the matrix

B =
1

det(A)

(
d −b
−c a

)
, (6.38)

for the case in which det(A) 6= 0 and (6.31) holds true, is such that

AB = I.

It can also be verified that BA = I (see Problem 1 in Assignment #16). Thus
the matrix in (6.38) is the inverse of A for the case in which det(A) 6= 0 and
(6.31) holds true.

Next, assume that det(A) 6= 0 and

a = 0 or c = 0. (6.39)

Suppose that a = 0; then,

det(A) = −bc 6= 0; (6.40)

so that
b 6= 0 and c 6= 0. (6.41)

It then follows from the first equation in (6.30) that

by = 1,

from which we get that

y =
1

b
, (6.42)

since b 6= 0 by the first condition in (6.41).
Next, use the second condition in (6.41) and (6.40) to rewrite (6.42) as

y = − c

det(A)
. (6.43)

Next, use the second condition in (6.41) to solve the second equation in (6.30)
to get

x = −d
c
y. (6.44)
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Combining (6.44) and (6.43) then yields that

x =
d

det(A)
. (6.45)

Continuing with the assumption that a = 0, and using the first condition in
(6.41), we obtain from the third equation in (6.30) that

w = 0, (6.46)

we can rewrite as
w =

a

det(A)
, (6.47)

since a = 0.
Finally, substituting the result in (6.46) into the last equation in (6.30) we

get
cz = 1,

which can be solved for z to yield

z =
1

c
, (6.48)

in view of the second condition in (6.41). We can then use (6.39) to rewrite
(6.48) as

z = − b

det(A)
. (6.49)

We note that the results in (6.45), (6.43), (6.49) and (6.47) are precisely the
results in (6.34), (6.34), (6.37) and (6.36), respectively, which is the result that
we obtained in the previous case. Consequently, in this case as well we obtain
that the inverse of A in (6.25) is given by B in (6.38).

The second option in (6.39) (namely, c = 0) yields the same result. We
therefore conclude that, if A given in (6.25) is such that det(A) 6= 0, then A is
invertible and

A−1 =
1

det(A)

(
d −b
−c a

)
. (6.50)

Example 6.2.22. Let A be the matrix in Example 6.2.21; namely,

A =

(
0 −2
1 −3

)
. (6.51)

Then, det(A) = 2; so that, det(A) 6= 0. Thus, we can use the formula in (6.50)
to compute the inverse of A in (6.51) to get

A−1 =
1

2

(
−3 2
−1 0

)
,

which yields the same matrix in (6.24) obtained in Example 6.2.21.



44 CHAPTER 6. LINEAR VECTOR FIELDS IN TWO DIMENSIONS

6.3 The Flow of Two–Dimensional Vector Fields

The goal of this section is to compute the flow of two–dimensional linear fields
F : R2 → R2 given by

F

(
x
y

)
=

(
ax+ by
cx+ dy

)
, for

(
x
y

)
∈ R2. (6.52)

The flow of F in (6.52) is made up of curves parametrized by paths(
x
y

)
: R→ R2

satisfying the differential equations
dx

dt
= ax+ by;

dy

dt
= cx+ dy.

(6.53)

We can rewrite the system in (6.53) in vector form as(
ẋ
ẏ

)
= A

(
x
y

)
, (6.54)

where A is the 2× 2 matrix

A =

(
a b
c d

)
. (6.55)

In (6.54) the dot on top of a symbol for a variable indicates the derivative of
that variable with respect to t; so that,

ẋ =
dx

dt
and ẏ =

dy

dt
.

Example 6.3.1. Consider system
dx

dt
= −9y;

dy

dt
= x− 6y.

(6.56)

The matrix corresponding to the system in (6.56) is

A =

(
0 −9
1 −6

)
. (6.57)

Let v be the vector

v =

(
3
1

)
(6.58)
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We note that

Av =

(
0 −9
1 −6

)(
3
1

)
=

(
−9
−3

)
;

so that,
Av = −3v (6.59)

We will show that the path (
x
y

)
: R→ R2

defined by (
x(t)
y(t)

)
= c e−3tv, for t ∈ R, (6.60)

where c is a constant and v is the vector in (6.58), is a solution of the equation(
ẋ
ẏ

)
= A

(
x
y

)
, (6.61)

where A is the 2× 2 matrix given in (6.57). Indeed, taking the derivative with
respect to t on both sides of (6.60) yields(

ẋ
ẏ

)
=

d

dt

[
c e−3tv

]
= c

d

dt

[
e−3t

]
v

= c(−3)e−3tv

= ce−3t(−3v);

so that, by virtue of (6.59) (
ẋ
ẏ

)
= ce−3tAv.

Consequently, using the properties of the matrix product,(
ẋ
ẏ

)
= A

[
ce−3tv

]
. (6.62)

Comparing (6.60) and (6.62) we see that(
ẋ
ẏ

)
= A

(
x
y

)
,

which is (6.61).
We have therefore obtained solutions to the system in (6.56) which lie on

a line determined by the vector v in (6.57). These solutions are sketched in
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x

y

Figure 6.3.1: Sketch of (6.60)

Figure 6.3.1. The sketch shows the origin, corresponding to c = 0 in (6.60),
and two half lines pointing towards the origin correspond to c > 0 (in the first
quadrant), and to c < 0 (in the third quadrant). The lines point towards the
origin because of the decreasing exponential in the definition of the solutions in
(6.60).

Example 6.3.1 illustrates a special situation in the flow of linear fields. In
some cases, trajectories along the flow will lie on lines through the origin. We
shall refer to these special solutions as “line solutions.”

Line solutions for a system of the form(
ẋ
ẏ

)
= A

(
x
y

)
, (6.63)

where A is a 2 × 2 matrix, occur when there exists a nonzero vector v in R2

such that
Av = λv, (6.64)

for some scalar λ. When this is the case, the paths(
x(t)
y(t)

)
= c eλtv, for t ∈ R, (6.65)

for arbitrary constant c, yields solutions to the system in (6.63). The solutions
in (6.65) yield the origin for the case c = 0, and two half-lines in the direction
of the vector v pointing towards the origin if λ < 0, or away from the origin if
λ > 0.
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We are able to find line solutions of the system in (6.63) as long as we
are able to find scalars λ for which the equation in (6.64). This is a very
special situation; when it occurs, we call the scalar λ an eigenvalue of the matrix
A; a corresponding nonzero vector v for which (6.64) holds true is called an
eigenvector for λ.

6.3.1 Eigenvalues and Eigenvectors

Given a 2× 2 matrix

A =

(
a b
c d

)
, (6.66)

we say that a scalar λ is an eigenvalue of A if there exists a nonzero vector

v =

(
x
y

)
such that (

a b
c d

)(
x
y

)
= λ

(
x
y

)
. (6.67)

Thus, in order to find eigenvalues for the matrix A in (6.66), we first need to find
conditions on the entries of A that will guarantee that the equation in (6.67)
has nonzero solutions. The equation in (6.67) can be written as system of two
linear equations {

ax+ by = λx;
cx+ dy = λy,

or {
(a− λ)x+ by = 0;
cx+ (d− λ)y = 0.

(6.68)

By inspection we see that the system in (6.68) has the zero solution.(
x
y

)
=

(
0
0

)
For this reason, this solution is usually referred to as the trivial solution. How-
ever, in some cases, the system in (6.68) might have infinitely many solutions
(this would be the case in which the two equations in (6.68) represent the same
line). This occurs, according to the result in Problems 3 and 4 in Assignment
#15, when

(a− λ)(d− λ)− bc = 0,

or
λ2 − (a+ d)λ+ ad− bc = 0. (6.69)

The equation in (6.69) is called the characteristic equation of the matrix A in
(6.66). Its solutions will be eigenvalues of A. The polynomial

p
A

(λ) = λ2 − (a+ d)λ+ ad− bc (6.70)
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is called the characteristic polynomial of A. The roots, or zeros, of pA(λ) are
the eigenvalues of A. We have encountered the expression ad− bc in the charac-
teristic polynomial in (6.70); it is the determinant of A, denoted by det(A). The
coefficient of expression a+ d is the sum of the entries along the main diagonal
of A, and it is called the trace of A; we write,

trace(A) = a+ d.

We can therefore write the characteristic polynomial of A as

p
A

(λ) = λ2 − trace(A)λ+ det(A). (6.71)

Once we find an eigenvalue, λ, we can find a corresponding eigenvector by
solving the system of equations in (6.68) for the specific value of λ. We illustrate
this procedure in the following example.

Example 6.3.2. Find the eigenvalues and corresponding eigenvectors of the
matrix

A =

(
3 −1
5 −3

)
. (6.72)

Solution: The trace of the matrix A in (6.72) is trace(A) = 0, its determinant
is det(A) = −4. Then, according to (6.71), the characteristic polynomial of A
is

p
A

(λ) = λ2 − 4,

which factors into
p

A
(λ) = (λ+ 2)(λ− 2);

so that, the eigenvalues of A in (6.72) are

λ1 = −2 and λ2 = 2. (6.73)

Next, we compute eigenvectors corresponding to λ1 and λ2 in (6.73). We do
this by solving the system of equations in (6.68) for λ = λ1 and for λ = λ2.

For λ = −1, the system in (6.68) yields{
5x− y = 0;
5x− y = 0,

which is the single equation
y = 5x. (6.74)

Since we are looking for a nontrivial solution os the system, we can set x = 1
in (6.74) to get y = 5; so that,

v1 =

(
1
5

)
(6.75)

is an eigenvector corresponding to λ1 = −2.
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Similarly, for λ = λ2 = 2, we obtain the system{
x− y = 0;
x− y = 0,

which is equivalent to the equations

y = x,

from which we get that

v2 =

(
1
1

)
(6.76)

is an eigenvector corresponding to the eigenvalue λ2 = 2. �

6.3.2 Line Solutions

An advantage of knowing eigenvalues and eigenvectors of a 2 × 2 matrix, A, is
that they provide special kind of solutions to the system(

ẋ
ẏ

)
= A

(
x
y

)
. (6.77)

For instance, if A has a real eigenvalue, λ, with a corresponding eigenvector, v,

then the path

(
x
y

)
: R→ R2 define by(

x(t)
y(t)

)
= c eλtv, for t ∈ R,

where c is a constant, solves the system in (6.77). An instance of this fact was
seen in Example 6.3.1.

For the case in which the matrix A has two real eigenvalues, λ1 and λ2, with
λ1 6= λ2, corresponding eigenvectors v1 and v2, respectively, do not lie on the
same line (see Problem 3 in Assignment #18). Consequently, we obtain two
distinct line solutions for the system in (6.77),(

x1(t)
y1(t)

)
= c1 e

λ1tv1 and

(
x2(t)
y2(t)

)
= c2 e

λ2tv2 for t ∈ R,

where c1 and c2 are constants. Furthermore, it is shown in courses in differential
equations, that the expression(

x(t)
y(t)

)
= c1 e

λ1tv1 + c2 e
λ2tv2 for t ∈ R, (6.78)

where c1 and c2 are arbitrary constants, yields all solutions of the system in
(6.77) (see also Problem 4 in Assignment #17).

The expression in (6.78) can be uses to aid in sketching the flow the vector
field

A

(
x
y

)
= A

(
x
y

)
, for all

(
x
y

)
∈ R2.

We illustrate this in the next example.
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Example 6.3.3. Sketch the flow of the vector field F : R2 → R2 given by

F

(
x
y

)
=

(
3x− y
5x− 3y

)
, for

(
x
y

)
∈ R2. (6.79)

Solution: The flow of the field (6.79) is obtained by solving the pair of differ-
ential equations 

dx

dt
= 3x− y;

dy

dt
= 5x− 3y.

(6.80)

The system (6.80) can in turn be written in vector form as(
ẋ
ẏ

)
= A

(
x
y

)
, (6.81)

where A is the matrix

A =

(
3 −1
5 −3

)
. (6.82)

We saw in Example 6.3.2 that the matrix A in (6.82) has eigenvalues λ1 =
−2 and λ2 = 2, with corresponding eigenvectors given in (6.75) and (6.76),
respectively; that is,

v1 =

(
1
5

)
and v2 =

(
1
1

)
, (6.83)

By the discussion preceding this example, all solutions to the system in (6.80)
are given by (

x(t)
y(t)

)
= c1 e

−2tv1 + c2 e
2tv2 for t ∈ R, (6.84)

where c1 and c2 are arbitrary constants, and v1 and v2 are as given in (6.83).
The general form of the solutions given in (6.84) is very helpful in sketching

the the flow of the field in (6.79). We first note that, if c1 = c2 = 0, (6.84)
yields the origin, (0, 0), as a solution. If c1 6= 0 and c2 = 0, the flow curves
will lie on the line through the origin parallel to the vector v1; both solution
curves will point towards the origin because the exponential e−2t decreases with
increasing t. On the other hand, if c1 = 0 and c2 6= 0, the trajectories lie on
the in the direction of the vector v2 and point away from the origin because
the exponential e2t increases with increasing t. We have therefore obtained the
origin and four line solutions. All of these are shown in Figure 6.3.2. Figure
6.3.2 shows other possible flow curves of the field in (6.79). In the next section
we will see how to sketch those curves. �



6.3. THE FLOW OF TWO–DIMENSIONAL VECTOR FIELDS 51
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Figure 6.3.2: Sketch of Flow of the Field in (6.79)


