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Assignment #7
Due on Friday, April 13, 2018

Read Section 5.4 on Green’s Function in the class lecture notes at
http://pages.pomona.edu/~ajr04747/

Read Section 1.5.2 on Green’s Function Method, pp. 28-33, in Introduction to Partial
Differential Equations and Hilbert Space Methods by Karl E. Gustafson.

Background and Definitions
The Support of a Function. Given a function ¢: R? — R, the support of o,
denoted Supp(yp), is the closure of the set where ¢ is nonzero; that is,

Supp(p) = {(z,y) € R? | p(z,y) # 0}.

If Supp(yp) is also bounded, then it is compact, and we say that ¢ has compact
support. Let  denote an open subset of R?2. We denote by C'>°(f2) the space of
real-valued, C* functions, ¢: R? — R, that have compact support contained in €.

Do the following problems.
1. Let Q be an open subset of R? and u € C(Q,R). Let (z,,9,) € 2 and 7 > 0 be
such that D, (x,,y,) C 2. Show that there exists w, € [—m, 7] such that

j{ u(z,y) ds = 2mru(x, + 1 cos(w,), Yo + 7sin(w,)).
aDr(Ctovyo)
) 1
Deduce that lim — u(z,y) ds = u(ze, Yo)-
r—0+ 271 D, (20,Yo)

2. Locally Integrable Functions. Let U/ denote an open subset of R%. A func-
tion w: U — RU{—o00,+0o0} (that is, |w| could be infinite at a point, or points,
in U) is said to be locally integrable in U if and only if, for every disc, D, such

that D C U,
//|w| dxdy < oo.
D

Define W: R* - R U {—o0, +00} by

—%anm,y)], if (z,y) # (0,0);
Wiz, y) = )
400, if (z,y) = (0,0).

Verify that the function W defined in (1) is locally integrable in R?.
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3. Integration by Parts in Two Dimensions. Let U denote an open subset
of R? ~and (2 a bounded subset of U with piecewise C! boundary, 92, and such
that Q C U.

(a) Let u,v € C*(U,R). Use the divergence theorem to derive the following
integration by parts formulas in R2.

/ u@ dxdy :% uvny ds — // @v dxdy,

Q an o0 Q al‘

// u@ dxdy = ]4 uvng ds — // @v dxdy,
o Oy o0 o 0y

where n; and no are the components of the outward, unit normal vector
n = (n1,mn2) on the boundary, 952, of Q.

(b) Show that

// uaﬁ dedy = _// @gp dzdy, for every ¢ € CSO(Q)v
o Oz o Ox

nd
// ua_go dxdy = — // @gp dxdy, for every p € C(Q).

4. Weak Derivatives. Let ) denote an open subset of R?, and let w: Q —
RU{—00, +0o0} be a locally integrable function. Suppose that there exist locally
integrable functions v; and vy such that

// waﬁ drdy = — // v dxdy,  for all p € C°(Q),
o Oz Q

// waﬁ drdy = — // vo dxdy,  for all ¢ € C°(Q).
o Oy Q

We then say that v; and vy are weak partial derivatives of w. We denote

w ow
them by s and —, respectively, even though the functions w might not
x

dy

have partial derivatives in the usual sense of Multivariable Calculus.

and

a

and

(a) Let u € C*(Q,R). Verify that u has weak partial derivatives ? and %
2y Y
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(b) Suppose that a locally integrable function w: Q@ — R U {—o00,+0o0} has
second order, weak partial derivatives. Verify that

// w(Ay) drdy = // (Aw)p dxdy, for all p € C(Q),
Q Q

where Aw denotes the weak Laplacian of w.

5. Let U denote an open subset of R? and Q a bounded, connected, open subset
of U satisfying Q) C U, and having a piecewise C! boundary, 0f).

For (z,v), (§,n) € R? define

W (2, 9). (6.1) = 5= 1nl(r,) — (€ m)], provided that (r,y) # (€,n). (2)

Let u € C*(U,R). In the class lecture notes we derived the following represen-
tation formula

a(ey) = - / / W ((z,y), (€, m) Au(€, ) dédn

+fg9 (W((x,y), (5,77)% - uaW((xéZ), (g,n)) ds,

where W is defined in (2) and we have written u for u(¢,n) and g_u for
n
0
%[u(ﬁ, n)] in the line integral in (3).
(a) Use the representation formula in (3) to show that
[ W@, €m-aptem) din= otz ()
for all p € C°(Q), where W is as defined in (2).
(b) Use the result of part (b) in Problem 4 to deduce from (4) that
[[camg dein = oty ratipecz@. @
0

where AW denotes the weak Laplacian of the function W defined in (2)
with respect to the variables £ and 7.
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The right-hand side of (5) is the definition of the Dirac distribution, 6.y,
in the sense that

[ deatemoten dedn = o). forat g e C2(@),

In this sense, the equation in (5) can be written as

[ ame azan= [[ dpeten dean. o atipecz@. ©)
Q Q

The equation in (6) gives meaning to the statement that W is the weak
solution of the equation
—AW = (54

This is what it means for the function W to be the fundamental solution
of Poisson’s equation.



