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Assignment #7

Due on Friday, April 13, 2018

Read Section 5.4 on Green’s Function in the class lecture notes at
http://pages.pomona.edu/~ajr04747/

Read Section 1.5.2 on Green’s Function Method, pp. 28–33, in Introduction to Partial
Differential Equations and Hilbert Space Methods by Karl E. Gustafson.

Background and Definitions
The Support of a Function. Given a function ϕ : R2 → R, the support of ϕ,
denoted Supp(ϕ), is the closure of the set where ϕ is nonzero; that is,

Supp(ϕ) = {(x, y) ∈ R2 | ϕ(x, y) 6= 0}.

If Supp(ϕ) is also bounded, then it is compact, and we say that ϕ has compact
support. Let Ω denote an open subset of R2. We denote by C∞

c (Ω) the space of
real–valued, C∞ functions, ϕ : R2 → R, that have compact support contained in Ω.

Do the following problems.

1. Let Ω be an open subset of R2 and u ∈ C(Ω,R). Let (xo, yo) ∈ Ω and r > 0 be
such that Dr(xo, yo) ⊂ Ω. Show that there exists ωr ∈ [−π, π] such that∮

∂Dr(xo,yo)

u(x, y) ds = 2πru(xo + r cos(ωr), yo + r sin(ωr)).

Deduce that lim
r→0+

1

2πr

∮
∂Dr(xo,yo)

u(x, y) ds = u(xo, yo).

2. Locally Integrable Functions. Let U denote an open subset of R2. A func-
tion w : U → R∪{−∞,+∞} (that is, |w| could be infinite at a point, or points,
in U) is said to be locally integrable in U if and only if, for every disc, D, such
that D ⊂ U , ∫∫

D

|w| dxdy <∞.

Define W : R2 → R ∪ {−∞,+∞} by

W (x, y) =


− 1

2π
ln |(x, y)|, if (x, y) 6= (0, 0);

+∞, if (x, y) = (0, 0).

(1)

Verify that the function W defined in (1) is locally integrable in R2.
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3. Integration by Parts in Two Dimensions. Let U denote an open subset
of R2 and Ω a bounded subset of U with piecewise C1 boundary, ∂Ω, and such
that Ω ⊂ U .

(a) Let u, v ∈ C1(U ,R). Use the divergence theorem to derive the following
integration by parts formulas in R2.∫∫

Ω

u
∂v

∂x
dxdy =

∮
∂Ω

uvn1 ds−
∫∫

Ω

∂u

∂x
v dxdy,

and ∫∫
Ω

u
∂v

∂y
dxdy =

∮
∂Ω

uvn2 ds−
∫∫

Ω

∂u

∂y
v dxdy,

where n1 and n2 are the components of the outward, unit normal vector
n̂ = (n1, n2) on the boundary, ∂Ω, of Ω.

(b) Show that∫∫
Ω

u
∂ϕ

∂x
dxdy = −

∫∫
Ω

∂u

∂x
ϕ dxdy, for every ϕ ∈ C∞

c (Ω),

and ∫∫
Ω

u
∂ϕ

∂ϕ
dxdy = −

∫∫
Ω

∂u

∂y
ϕ dxdy, for every ϕ ∈ C∞

c (Ω).

4. Weak Derivatives. Let Ω denote an open subset of R2, and let w : Ω →
R∪{−∞,+∞} be a locally integrable function. Suppose that there exist locally
integrable functions v1 and v2 such that∫∫

Ω

w
∂ϕ

∂x
dxdy = −

∫∫
Ω

v1ϕ dxdy, for all ϕ ∈ C∞
c (Ω),

and ∫∫
Ω

w
∂ϕ

∂y
dxdy = −

∫∫
Ω

v2ϕ dxdy, for all ϕ ∈ C∞
c (Ω).

We then say that v1 and v2 are weak partial derivatives of w. We denote

them by
∂w

∂x
and

∂w

∂y
, respectively, even though the functions w might not

have partial derivatives in the usual sense of Multivariable Calculus.

(a) Let u ∈ C1(Ω,R). Verify that u has weak partial derivatives
∂u

∂x
and

∂u

∂y
.
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(b) Suppose that a locally integrable function w : Ω → R ∪ {−∞,+∞} has
second order, weak partial derivatives. Verify that∫∫

Ω

w(∆ϕ) dxdy =

∫∫
Ω

(∆w)ϕ dxdy, for all ϕ ∈ C∞
c (Ω),

where ∆w denotes the weak Laplacian of w.

5. Let U denote an open subset of R2 and Ω a bounded, connected, open subset
of U satisfying Ω ⊂ U , and having a piecewise C1 boundary, ∂Ω.

For (x, y), (ξ, η) ∈ R2 define

W ((x, y), (ξ, η)) = − 1

2π
ln |(x, y)− (ξ, η)|, provided that (x, y) 6= (ξ, η). (2)

Let u ∈ C2(U ,R). In the class lecture notes we derived the following represen-
tation formula

u(x, y) = −
∫∫

Ω

W ((x, y), (ξ, η))∆u(ξ, η) dξdη

+

∮
∂Ω

(
W ((x, y), (ξ, η)

∂u

∂n
− u∂W ((x, y), (ξ, η)

∂n

)
ds,

(3)

where W is defined in (2) and we have written u for u(ξ, η) and
∂u

∂n
for

∂

∂n
[u(ξ, η)] in the line integral in (3).

(a) Use the representation formula in (3) to show that∫∫
Ω

W ((x, y), (ξ, η))(−∆ϕ(ξ, η)) dξdη = ϕ(x, y), (4)

for all ϕ ∈ C∞
c (Ω), where W is as defined in (2).

(b) Use the result of part (b) in Problem 4 to deduce from (4) that∫∫
Ω

(−∆W )ϕ dξdη = ϕ(x, y), for all ϕ ∈ C∞
c (Ω), (5)

where ∆W denotes the weak Laplacian of the function W defined in (2)
with respect to the variables ξ and η.
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The right–hand side of (5) is the definition of the Dirac distribution, δ(x,y),
in the sense that∫∫

Ω

δ(x,y)(ξ, η)ϕ(ξ, η) dξdη = ϕ(x, y), for all ϕ ∈ C∞
c (Ω).

In this sense, the equation in (5) can be written as∫∫
Ω

(−∆W )ϕ dξdη =

∫∫
Ω

δ(x,y)ϕ(ξ, η) dξdη, for all ϕ ∈ C∞
c (Ω). (6)

The equation in (6) gives meaning to the statement that W is the weak
solution of the equation

−∆W = δ(x,y).

This is what it means for the function W to be the fundamental solution
of Poisson’s equation.


