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Solutions to Assignment #11

1. Let x: J — R demote a function that is twice—differentiable. Suppose that x
solves the second order differential equations

i+ at + bxr =0, (1)
where a and b are real numbers.
By setting y(t) = #(t) for all ¢ € J, verify that the path o: J — R? given by

o(t) = (x(t)) . fortel (2)

y(t)

solves the system of first—order differential equations

{x = )

y = —br—ay.

Solution: Compute
d..

QZE[SE] = T

so that, using (1),
Y = —at — bx,
which is the second equation in (3).

Since, & = y, by the definition of y, the first equation in (3 is also satisfied. It
then follows that the path in (2) solves the system in (3). O

2. Let a and w denote a positive numbers, and ¢ denote any real number. Define
the path o: R — R? by

B sin(wt + ¢)
o(t)=a (w cos(wt + ¢)> , forteR. (4)

Verify that o(t) solves the system of differentiable equations

{S'fiy;Q‘ (5)

Y
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Solution: In this case, according to the definition of the path ¢ in (4),

x(t) = asin(wt+ ¢);
for t € R. (6)
y(t) = awcos(wt + @),

Taking the derivative with respect to ¢ on both sides of the first equation in (6),
we have
i(t) = awcos(wt+ @), forteR;

so that, according to the second equation in (6),

T =y,
which is the first equation in (5).

Next, take the derivative with respect to ¢ on both sides of the second equation
in (6), to get
y(t) = —aw’sin(wt +¢), forteR;

so that, in view of the first equation of (6),

. 2
Yy=—-ww,

which is the second equation in (5).

We have therefore shown that the path o defined in (4) solves the system of
differential equations in (5). O

3. Use the result of Problem 2 to sketch the phase portrait of the system in (5).
Consider the three cases: (i) 0 <w < 1, (ii) w =1, and (iii) w > 1.

Solution: If a = 0 in the parametric equations in (6), we obtain the equilibrium
solution (0, 0), This solution is sketched in Figure 1, Figure 2 and Figure 3.

Suppose a > 0 in the parametric equations in (6) and divide both equations by

a to get
? = sin(wt + ¢);
for t € R. (7)
v _ cos(wt + ¢),
wa

Thus, squaring on both sides of the equation in (7) and adding them, we get

22 %
a? w2

=1, (8>

a?
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where we have used the trigonometric identity

cos? A +sin? A =1.

The graph of the equation in (8) is a circle of radius a centered at the origin in
the case w = 1. In the case w # 1, the graph is an ellipse with vertices (—a,0)
and (a,0) on the z—axis and vertices (0, —wa) and (0,wa) on the y—axis. We
sketch the phase portrait of the system in (5) for each of the cases (i) 0 < w < 1,
(ii) w =1, and (iii) w > 1, separately

(i) Figure 1 shows a sketch of the phase portrait of the system in (5) for the
case 0 < w < 1. The sketch also shows the direction along the orbits

AL
¥

Figure 1: Sketch of phase portrait of the system in (5) for 0 <w < 1

dictated by the system of differential equations in (5). For instance, in
the first quadrant, since x > 0 and y > 0, we get from the equations in
(5) that £ > 0 and y < 0; thus, the direction along the ellipses is in the
clockwise sense.

(ii) In the case w = 1, the phase portrait of the system in (5) consists of
concentric circles centered at the origin oriented in the clockwise sense. A
sketch of this situation is shown in Figure 2.

(iii) The sketch in Figure 3 shows a few of those ellipses for varies values of
a > 0 in the case w > 1.

O
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Figure 2: Sketch of phase portrait of the system in (5) for Ow =1

4. Consider the second order differential equation
. 2
I =—w’r, 9)
where w is a positive number.

(a) Assume that z: R — R is a twice—differentiable function that solves the
differential equation in (9), and set y(t) = &(t) for all ¢ € R.

Verify that the path o: J — R? given by
o(t) = (x(t)) , forteR, (10)

solves the system of differential equations in (5).

Solution: Suppose that x: R — R is a twice—differentiable function that
solves the differential equation in (9), and set y(t) = @(t) for all t € R.

Compute

so that, in view of (9),

S 2
Yy=—-wwx,

which is the second equation in the system in (5).

Since, & = y, by the definition of y, the first equation in (5) is also satisfied.

Hence, the path o defined in (10) solves the system of differential equations
in (5). O
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Figure 3: Sketch of phase portrait of the system in (5) for w > 1

(b) Use the result of Problem 2 to obtain a solution of the second order differ-
ential equation (9) subject to the initial conditions z(0) = z, and #(0) = 0,
where z, is a positive real number.

Sketch the solution.

Solution: This problem can be stated as the following initial value prob-

lem (IVP): )
x(a) = xo;’ (11)
%(0) = 0.

Let z denote a solution of the differential equation in (11). By the result
in part (a) of this problem, setting y = #, the path o defined in (10) solves
the system in (5).

It was shown in Problem 2 that the path

[ asin(wt + ¢)
o(t) = (aw cos(wt + ¢)) , forteR, (12)
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solves the system in (5). Thus, a solution of the second—order differential
equation in (11) is given by the first component of the path in (12); namely,

z(t) = asin(wt + ¢), fort € R, (13)

where a and ¢ are constants.

We next determine values of a and ¢ so that the initial conditions in the
IVP in (11) are satisfied.

From (13) we obtain that
t(t) = awcos(wt + ¢), fort € R, (14)

where we have used the Chain Rule.
Substitute 0 for ¢ in (13) and (14), and use the initial conditions in (11)

to get
asin(¢) = x,;
{ awcos(¢p) = 0. (15)

We first note that a cannot be 0; otherwise, z(t) = 0, for all ¢, according
to (13), and this is incompatible with the initial condition x, > 0. Hence,

since we are also assuming that w > 0, we get from the second equation in
(15) that

cos(¢) = 0;
thus, we can take

m
= _. 16

6=T (16)

Substituting the value of ¢ in (16) into the first equation in (15) then yields
a =T, (17)

Substitute the values for a and ¢ in (17) and (16), respectively, into the
formula for z(t) in (13) to get

x(t) = x,sin <wt + g) , forteR,
which, using the trigonometric identity
sin(A + B) = sin A cos B + cos Asin B,
can be rewritten as
z(t) = x,cos(wt), fort e R. (18)

A sketch of the function in (18) is shown in Figure 4. O
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Figure 4: Sketch of = as a function of ¢
5. Consider the second order differential equation
i = a’r, (19)
where a is a positive number.
Define
z(t) =eM, forteR. (20)

(a) Determine distinct values of A for which the function x defined in (20)
solves the differential equation in (19).

Solution: Differentiate the function in (20) with respect to t to get

i(t) = M, fort €R. (21)
Similarly, differentiating the function in (21 with respect to ¢ yields

i(t) = A%eM,  fort € R. (22)

Next, substitute the functions in (22) and (20) into the second-order dif-
ferential equation in (19) to get

MM = q2eM fort € R;
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so that, since the exponential function is never 0,
N = a’. (23)
The equation in (23) has solutions
A =—a and M\ =-—a. (24)

0

Let A; and Ay denote the two distinct values of A obtained in part (a).
Verify that the function u: R — R? given by

u(t) = c M 4 e, fort € R,

where ¢; and ¢y are constant, solves the differential equation in (19).
Solution: With the values of A in (24), we have that

u(t) = cre” ™ + cpe™, forteR (25)
Differentiate the function w in (25) to get
u(t) = —acre™ ™ + acye™,  fort € R, (26)

where we have used the Chain Rule.
Similarly, differentiating with respect to t the function in (26),

ii(t) = a*cie”™ 4 a’cpe™,  fort € R. (27)
Factoring a? in the right—hand side of (27) we get
i(t) = a*(cre™™ + cpe™), fort € R;
so that, in view of the definition of w in (25),
2

i = a“u,

which shows that u solves the differential equation in (19). O



