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Solutions to Assignment #4

1. Let the points P and Q in R2 have coordinates (1,−1) and (−2, 3), respectively.

(a) Sketch the displacement vector
−→
PQ.

Solution: See sketch in Figure 1. �
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Figure 1: Sketch of directed line segment from P to Q

(b) Sketch the vector v =
−→
PQ in standard position.

Solution: See sketch of v in standard position in Figure 1. �

(c) Compute the cosine of the angle that v makes with the positive x–axis.

Solution: Write

v =

(
−3

4

)
.

Let θ denote the angle that v (in standard position) makes with the positive
x–axis. Then,

cos θ =
−3

‖v‖
,

where
‖v‖ =

√
(−3)2 + 42 =

√
25 = 5.

Thus,

cos θ = −3

5
.

�
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(d) Compute the norm, ‖v‖, of the vector v in part (a) and find a vector, û,
of norm 1 that is in the same direction as the vector v.

Solution: The norm of v was computed to be ‖v‖ = 5 in the previous
part.

Set

û =

(
−3/5

4/5

)
.

Then, ‖û‖ = 1 and û is in the same direction as that of v. �

2. Let P , Q and v be as in Problem 1.

(a) Give the parametric equations of the line through the points P and Q.

Solution: The parametric equations of the line through P and Q are{
x = −3t+ 1;
y = 4t− 1,

for t ∈ R.

�

(b) Give the parametric equations of the line through P that is perpendicular
to the line found in part (a).

Solution: The slope of the line found in part (a) is

m =
4

−3
= −4

3
.

Thus, the slope of a line that is perpendicular to the line through P and
Q is

− 1

m
=

3

4
.

Thus, the equation of the line through P that is perpendicular to the line
through P and Q is

y =
3

4
(x− 1)− 1. (1)

Hence, making the parametrization

x = 4t+ 1, for t ∈ R, (2)

we get from (1) that
y = 3t− 1. (3)
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Combining (2) and (3) yields the parametrization{
x = 4t+ 1;
y = 3t− 1,

for t ∈ R.

�

(c) Give a vector, w, that is perpendicular to v and such that ‖w‖ = 1.

Solution: Let

w =

(
4/5
3/5

)
.

Then, ‖w‖ = 1 and w is perpendicular to v because it is parallel to a line
perpendicular to v. �

3. Let v denote the vector v =

(
a
b

)
. For a real number c, the scalar multiple cv

of v is defined by cv =

(
ca
cb

)
.

(a) Suppose that c 6= 0. Explain why the vector cv lies in the same line through
the origin as the vector v. Discuss the cases c > 0 and c < 0.

Solution: We consider the set of scalar multiples of v:

L =

{(
x
y

)
∈ R2

∣∣∣ (x
y

)
= t

(
a
b

)
, t ∈ R

}
. (4)

We assume that a > 0 and b > 0.

A vector

(
x
y

)
is in L, according to the definition of L in (4), if and only

if (
x
y

)
=

(
at
bt

)
, for some t ∈ R,

from which we get the parametric equations{
x = at;
y = bt,

for t ∈ R. (5)

The equations in (5) are a parametrization of a straight line through the
origin (0, 0) and the point (a, b) in R2. Thus, L is a straight line in the
direction of the vector v. This is shown in Figure 2. Hence, all the multiples
of v lie in a line through the origin along the vector v; that is, the line
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Figure 2: Line generated by v

through the points (0, 0) and (a, b). We note that, if t > 0, tv lies along
the direction of v; and, if t < 0, tv points in the opposite direction to that

of v. The sketch in Figure 2 shows the vector −1

2
v, for the case in which

both a and b are assumed to be positive. �

(b) Use the definition of the norm of vectors to verify that ‖cv‖ = |c| ‖v‖,
where |c| is the absolute value of c.

Solution: Let v =

(
a
b

)
. Then, cv =

(
ca
cb

)
; so that,

‖cv‖ =
√

(ca)2 + (cb)2

=
√
c2a2 + c2b2

=
√
c2(a2 + b2)

=
√
c2
√
a2 + b2.

Thus, using the definition of the norm of v and the fact that
√
c2 = |c|,

the absolute value of c, we get that

‖cv‖ = |c|‖v‖, (6)

which was to be shown. �

(c) Suppose that ‖v‖ 6= 0 and put c =
1

‖v‖
. Compute ‖cv‖. What do you

conclude?
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Solution: Using the result in (6), compute

‖cv‖ =

∥∥∥∥ 1

‖v‖
v

∥∥∥∥
=

∣∣∣∣ 1

‖v‖

∣∣∣∣ ‖v‖
=

1

‖v‖
‖v‖

= 1.

Thus, cv is a unit vector. �

4. Let J denote and open interval of real numbers and σ : J → R2 denote a
differeantiable path given by

σ(t) =

(
x(t)
y(t)

)
, for t ∈ J.

Assume that ‖σ(t)‖ 6= 0 for all t ∈ R, and define the real–value function f : J →
R by

f(t) = ‖σ(t)‖, for t ∈ J.

Use the Chain Rule to show that f is differentiable and compute f ′(t) for all
t ∈ J . Give a formula for computing f ′(t), for all t ∈ J , in terms of x(t), y(t),
x′(t), y′(t), and ‖σ(t)‖.
Solution: Compute

f(t) =
√

(x(t))2 + (y(t))2, for t ∈ J.

Then, since (x(t))2 + (y(t))2 > 0 for all t ∈ J , f is the composition of two
differentiable functions. Hence, by the Chain Rule, f is differentiable and

f ′(t) =
1

2
√

(x(t))2 + (y(t))2
· d
dt

[
(x(t))2 + (y(t))2

]
;

so that, applying the Chain Rule again,

f ′(t) =
1

2
√

(x(t))2 + (y(t))2
· [2x(t)x′(t) + 2y(t)y′(t)]

=
x(t)x′(t) + y(t)y′(t)√

(x(t))2 + (y(t))2
;
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or, using the definition of the norm of σ(t),

f ′(t) =
x(t)x′(t) + y(t)y′(t)

‖σ(t)‖
, for t ∈ J. (7)

We can rewrite (7) in terms of the dot product of σ(t) and σ′(t):

f ′(t) =
σ(t) · σ′(t)

‖σ(t)‖
, for t ∈ J. (8)

�

5. Let P and Q denote points in the xy–plane with Cartesian coordinates (1, 0)
and (0, 1), respectively.

(a) Give the equation of the line through P and Q in Cartesian coordinates.

Solution: The equation of the line through P and Q, in Cartesian coor-
dinates, is

x+ y = 1,

or
y = 1− x. (9)

�

(b) Give parametric equations of the line through P and Q.

Solution: Use the equation in (9) and the parametrization x = t, for
t ∈ R, to get {

x = t;
y = 1− t, for t ∈ R. (10)

�

(c) Let

σ(t) =

(
x(t)
y(t)

)
, for t ∈ R,

be the parametrization of the line through P and Q that you found in part
(b).

Define f(t) = ‖σ(t)‖, for all t ∈ R.

Find the value of t in R for which f(t) is the smallest possible. Use this
fact to find the point on the line through P and Q that is the closest to
the origin in R2. Explain the reasoning leading to your answer.
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Solution: Using the parametric equations in (10) we get that

σ(t) =

(
t

1− t

)
, for t ∈ R, (11)

To find the value of t ∈ R for which f(t) = ‖σ(t)‖, for all t ∈ R, is the
smallest possible, we first find t for which f ′(t) = 0, where f ′(t) is given
by (7), or (8).

Now, f ′(t) = 0 when the numerator in (7), or (8), is 0. Using (7), we get
that f ′(t) = 0 when

x(t)x′(t) + y(t)y′(t) = 0,

where
x(t) = t and y(t) = 1− t;

so that,
x′(t) = 1 and y′(t) = −1.

We then have that f ′(t) = 0 when

t(1) + (1− t)(−1) = 0,

or
t− 1 + t = 0,

or
2t = 1,

from which we get that t =
1

2
.

Thus, the point on the line through P and Q that is closest to the origin
corresponds to

σ(1/2) =

(
1/2
1/2

)
.

�


