Review Problems for Exam 1

1. Sketch the curve C parametrized by

$$\begin{cases} x = \sin^2(t); \\ y = \cos^2(t), \end{cases} \quad \text{for } -\frac{\pi}{2} \leqslant t \leqslant \frac{\pi}{2}.$$

2. A curve C is parametrized by the differentiable path given by

$$\sigma(t) = (3t^2, 2+5t), \quad \text{for } t \in \mathbb{R}.$$

Sketch the curve C in the xy-plane. Describe the curve.

3. Sketch the curve C parametrized by

$$\begin{cases} x = 2 + 3\cos t; \\ y = 1 + \sin t, \end{cases} \quad \text{for } 0 \leqslant t \leqslant 2\pi.$$

Describe the curve.

4. Give a parametrization for the portion of the circle of radius 2 centered at (1,1) from the point P(1,3) to the point Q(3,1).

5. Let $P(x_1, y_1)$ and $Q(x_2, y_2)$ denote distinct points in the plane. Give a parametrization of the directed line segment \overrightarrow{PQ} .

6. Given a curve C parametrized by a differentiable path $\sigma \colon J \to \mathbb{R}^2$, where J is an open interval, the tangent line to the curve at the point $\sigma(t_o)$, where $a < t_o < b$, is the straight line through $\sigma(t_o)$ in the direction of $\sigma'(t_o)$. The vector-parametric equation of this line is given by

$$\ell(t) = \sigma(t_o) + (t - t_o)\sigma'(t_o), \quad \text{for } t \in \mathbb{R}.$$

For the given parametrizations, give the vector-parametric equation of the tangent line to the path at the indicated point.

(a) $\sigma(t) = t\hat{i} + t^2\hat{j}$, for $t \in \mathbb{R}$, at the point (1, 1).

(b)
$$\sigma(t) = \begin{pmatrix} 2t - t^2 \\ t^2 \end{pmatrix}$$
, for $t \in \mathbb{R}$, at the point $(0, 4)$.

7. Let C denote the unit circle in the xy-plane centered at the origin. Give the coordinates of the points on C at which the tangent line is parallel to the line y=x.

8. Given a differentiable path, $\sigma: J \to \mathbb{R}^2$, where J is an open interval, the linear approximation of $\sigma(t)$, for t near $t_o \in J$, is the vector-valued function

$$\ell(t) = \sigma(t_o) + (t - t_o)\sigma'(t_o), \quad \text{for } t \in \mathbb{R}.$$

Give the linear approximations to the paths at the indicated points

- (a) $\sigma(t) = (t^3, 2 + t^2)$, for $t \in \mathbb{R}$, at the point (1, 3).
- (b) $\sigma(t) = (t, t t^3)$, for $t \in \mathbb{R}$, at the point (1, 0).
- 9. The line L_1 is given by the parametric equations

$$\begin{cases} x = 1 + 2t; \\ y = 3 - t, \end{cases} \text{ for } t \in \mathbb{R},$$

and the line L_2 is given by the parametric equations

$$\begin{cases} x = 3s; \\ y = 1+s, \end{cases} \text{ for } s \in \mathbb{R},$$

where t and s are parameters.

- (a) Determine whether or not the lines L_1 and L_2 meet. Explain the reasoning leading to your answer.
- (b) If the lines L_1 and L_2 do meet, determine the point where they intersect, and give the cosine of the angle the two lines make at the point of intersection.
- 10. A curve C in the plane is given by the parametric equations

$$\begin{cases} x = e^t; \\ y = e^{-2t}, \end{cases} \text{ for } t \in \mathbb{R}.$$

- (a) Sketch the curve C in the xy-plane and indicated the direction along the curve given by the parametrization.
- (b) Verify that the point (1,1) is on the curve C. Explain your reasoning.
- (c) Give the vector-parametric equation of the tangent line to the curve at the point (1, 1).
- (d) Give the vector–parametric equation of the line perpendicular to the tangent line to the curve at the point (1,1).