Assignment \#8

Due on Friday, March 6, 2020
Read Section 4.2 Distribution Functions in the class lecture notes at http://pages.pomona.edu/~ajr04747/
Read Section 3.2 on Continuous Distributions in DeGroot and Schervish.
Do the following problems

1. Suppose the pdf of a random variable X is as follows:

$$
f(x)= \begin{cases}\frac{4}{3}\left(1-x^{3}\right), & \text { for } 0<x<1 \\ 0, & \text { otherwise }\end{cases}
$$

Sketch the pdf and determine the values of the following probabilities:
(a) $\operatorname{Pr}\left(X<\frac{1}{2}\right)$
(b) $\operatorname{Pr}\left(\frac{1}{4}<X<\frac{3}{4}\right)$
(c) $\operatorname{Pr}\left(X>\frac{1}{3}\right)$
2. Suppose the pdf of a random variable is as follows:

$$
f(x)= \begin{cases}c x^{2}, & \text { for } 1 \leqslant x \leqslant 2 \\ 0, & \text { otherwise }\end{cases}
$$

(a) Find the value of c and sketch the pdf.
(b) Find the value of $\operatorname{Pr}(X>3 / 2)$.
3. Let $\mathcal{C}=\{x \in \mathbb{R} \mid 0<x<\infty\}$ and \mathcal{B} denote the Borel sets in \mathcal{C}. Let the pdf of a random variable, X, defined on \mathcal{C} be given by

$$
f_{X}(x)=e^{-x} \quad \text { for all } x>0 .
$$

Let $E_{k}=\{x \in \mathcal{C} \mid 2-1 / k<x \leqslant 3\}$ for $k=1,2,3, \ldots$
Compute $\operatorname{Pr}\left(E_{n}\right)$ for all n, and $\lim _{n \rightarrow \infty} \operatorname{Pr}\left(E_{n}\right)$.
4. A point is selected at random form the sample space $\mathcal{C}=\{x \in \mathbb{R} \mid 0<x<10\}$. For any Borel subset $E \subseteq \mathcal{C}$ the probability of E is defined to be

$$
\operatorname{Pr}(E)=\int_{E} \frac{1}{10} \mathrm{~d} x
$$

Define $X: \mathcal{C} \rightarrow \mathbb{R}$ to be

$$
X(x)=x^{2} \quad \text { for all } x \in \mathcal{C}
$$

Find the cumulative distribution function and the probability density function of X.
5. A median of the distribution of a random variable X is a value m for x such that

$$
\operatorname{Pr}(X<m) \leqslant \frac{1}{2} \quad \text { and } \quad \operatorname{Pr}(X \leqslant m) \geqslant \frac{1}{2}
$$

If there is only one such value m, it is called the median of the distribution. Suppose the pdf of a random variable X is given by the function

$$
f(x)= \begin{cases}\frac{1}{8} x, & \text { for } 0 \leqslant x \leqslant 4 \\ 0, & \text { otherwise }\end{cases}
$$

Compute a median for the distribution of X. Is it the median of the distribution?

