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Solutions to Review Problems for Final Exam

1. Three cards are in a bag. One card is red on both sides. Another card is white
on both sides. The third card is red on one side and white on the other side. A
card is picked at random and placed on a table. Compute the probability that
if a given color is shown on top, the color on the other side is the same as that
of the top.

Solution: Each card has a likelihood of 1/3 of being picked.

Assume for definiteness that the top of the picked card is red. Let Tr denote
the event that the top of the picked car shows red and Br denote the event that
the bottom of the card is also red. We want to compute

Pr(Br | Tr) =
Pr(Tr ∩Br)

Pr(Tr)
. (1)

Note that

Pr(Tr ∩Br) =
1

3
, (2)

since there is only one card for which both sides are red.

To compute Pr(Tr) observe that there are three equally likely choices out of six
for the top of the card to show red; thus,

Pr(Tr) =
1

2
. (3)

Hence, using (2) and (3), we obtain from (1) that

Pr(Br | Tr) =
2

3
. (4)

Similar calculations can be used to show that

Pr(Tw) =
1

2
, (5)

and

Pr(Bw | Tw) =
2

3
. (6)

Let E denote the event that a card showing a given color on the top side will
have the same color on the bottom side. Then, by the law of total probability,

Pr(E) = Pr(Tr) · Pr(Br | Tr) + Pr(Tw) · Pr(Bw | Tw), (7)
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so that, using (2), (4), (5) and (6), we obtain from (7) that

Pr(E) =
1

2
· 2

3
+

1

2
· 2

3
=

2

3
.

�

2. An urn contains 10 balls: 4 red and 6 blue. A second urn contains 16 red
balls and a number b of blue balls. A single ball is drawn from each urn. The
probability that both balls are the same color is 0.44. Determine the value of b.

Solution: Let R1 denote the event that the ball drawn from the first urn is red,
B1 denote the event that the ball drawn from the first urn is blue, R2 denote
the event that the ball drawn from the second urn is red, and B2 denote the
event that the ball drawn from the second urn is blue. We are interested in

E = (R1 ∩R2) ∪ (B1 ∩B2),

the event that both balls are of the same color. We observe that R1 ∩ R2 and
B1 ∩B2 are disjoint events; thus,

Pr(E) = Pr(R1 ∩R2) + Pr(B1 ∩B2), (8)

where R1 and R2 are independent events as well as B1 and B2. It then follows
from (8) that

Pr(E) = Pr(R1) · Pr(R2) + Pr(B1) · Pr(B2), (9)

where

Pr(R1) =
4

10
, Pr(R2) =

16

16 + b
, Pr(B1) =

6

10
, and Pr(B2) =

b

16 + b
;

thus, substituting into (9),

Pr(E) =
4

10
· 16

16 + b
+

6

10
· b

16 + b
. (10)

We are given that Pr(E) = 0.44; combining this information with (10) yields

32 + 3b

16 + b
= 2.2. (11)

Solving (11) for b yields b = 4. �
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3. A blood test indicates the presence of a particular disease 95% of the time
when the disease is actually present. The same test indicates the presence of
the disease 0.5% of the time when the disease is not present. One percent of
the population actually has the disease. Calculate the probability that a person
has the disease given that the test indicates the presence of the disease.

Solution: Let D denote the event that a person selected at random from the
population has the disease. Then,

Pr(D) = 0.01. (12)

Let P denote the event that the blood test is positive for the existence of the
disease. We are given that

Pr(P | D) = 0.95 (13)

and
Pr(P | Dc) = 0.005. (14)

We want to compute

Pr(D | P ) =
Pr(D ∩ P )

Pr(P )
, (15)

where
Pr(D ∩ P ) = Pr(D) · Pr(P | D),

by the multiplication rule of probability; so that,

Pr(D ∩ P ) = 0.0095, (16)

by virtue of (12) and (13), and

Pr(P ) = Pr(D) · Pr(P | D) + Pr(Dc) · Pr(P | Dc), (17)

by the law of total probability.

Substituting the values in (12), (13) and (14) into (17) yields

Pr(P ) = (0.01) · (0.95) + (0.99) · (0.005) = 0.01445. (18)

Substituting the values in (16) and (18) into (15) yields

Pr(D | P ) =̇ 0.6574.

Thus, it a person tests positive, there is about a 66% chance that she or he has
the disease. �
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4. A study is being conducted in which the health of two independent groups of
ten policyholders is being monitored over a one-year period of time. Individual
participants in the study drop out before the end of the study with probability
0.2 (independently of the other participants). What is the probability that at
least 9 participants complete the study in one of the two groups, but not in
both groups?

Solution: Let X denote the number of participants in the first group that drop
out of the study and Y denote the number of participants in the second group
that drop out of the study. Then X and Y are independent binomial(10, 0.2)
random variables. Then, A = (X 6 1) is the event that at least 9 participants
complete the study in the first group, and B = (Y 6 1) is the event that at least
9 participants complete the study in the second group. We want to compute
the probability of the event

E = (A ∩Bc) ∪ (Ac ∩B),

so that
Pr(E) = Pr(A ∩Bc) + Pr(Ac ∩B), (19)

since A ∩Bc and Ac ∩B are disjoint events.

Next, use the independence of A and B, given that X and Y are independent
random variables, to get from (19) that

Pr(E) = Pr(A) · (1− Pr(B) + Pr(B) · (1− Pr(A)), (20)

where
Pr(A) = Pr(X 6 1)

= Pr(X = 0) + Pr(X = 1)

= (0.8)10 + 10 · (0.2) · (0.8)9;

so that,
Pr(A) =̇ 0.3758. (21)

Similarly,
Pr(B) =̇ 0.3758. (22)

Substituting the results in (21) and (22) into (20) yields

Pr(E) =̇ 0.4691.

Thus, the probability that at least 9 participants complete the study in one of
the two groups, but not in both groups, is about 47%. �
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5. Suppose that 0 < ρ < 1 and let p(k) = Cρk, for k = 0, 1, 2, 3, . . ., and some
constant C > 0.

(a) Find the value of C so that p is the probability mass function (pmf) for a
random variable.

Solution: Compute

∞∑
k=0

Cρk = C
∞∑
k=0

ρk = C · 1

1− ρ
,

since the geometric series
∞∑
n=0

ρn converges to
1

1− ρ
, given that 0 < ρ < 1.

Therefore, since we want p to be a pmf, we must have that

C

1− ρ
= 1,

from which we get that
C = 1− ρ.

�

(b) Let X denote a discrete random variable with pmf p with the value of C
found in part (a). Compute Pr(X > 1).

Solution: We are assuming that X has pmf

p
X

(k) =

{
(1− ρ)ρk, for k = 0, 1, 2, . . . ;

0, elsewhere.
(23)

We can use the definition of the pmf of X in (23) to compute

Pr(X > 1) = 1− Pr(X 6 1)

= 1− p(0)− p(1)

= 1− (1− ρ)− ρ(1− ρ)

= ρ2.

�
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(c) Let X denote a discrete random variable with pmf p with the value of C
found in part (a). Compute compute the mgf of X.

Solution: Use the pmf of X in (23) to compute

ψ
X

(t) = E(etX)

=
∞∑
k=0

etk(1− ρ)ρk

= (1− ρ)
∞∑
k=0

(et)kρk;

so that,

ψ
X

(t) = (1− ρ)
∞∑
k=0

(ρet)k. (24)

Observe that the series on the right–hand side of (24) is a geometric series
that converges provided that ρet < 1, or

et <
1

ρ
,

from which we get that

t < ln

(
1

ρ

)
,

or
t < − ln ρ. (25)

Thus, if (25) holds true, we obtain from (24) that

ψ
X

(t) = (1− ρ)
1

1− ρet
;

so that,

ψ
X

(t) =
1− ρ

1− ρet
, for t < − ln ρ. (26)

�

(d) Let X denote a discrete random variable with pmf p with the value of C
found in part (a). Use the mgf of X computed in part (c) to compute the
expected value and variance of X.
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Solution: Taking the derivatives of the mgf of X given in (26), using the
quotient rule and the chain rule, yields

ψ′
X

(t) = − 1− ρ
(1− ρet)2

· (−ρet),

which simplifies to

ψ′
X

(t) =
ρ(1− ρ)et

(1− ρet)2
, for t < − ln ρ. (27)

Similarly, applying the quotient rule and the chain rule to the expression
for ψ′

X
(t) in (27) yields

ψ′′
X

(t) =
(1− ρet)2ρ(1− ρ)et − ρ(1− ρ)et · 2(1− ρet)(−ρet)

(1− ρet)4
,

which simplifies to

ψ′′
X

(t) =
ρ(1− ρ)et(1− ρet)[1− pet + 2ρet]

(1− ρet)4
,

or

ψ′′
X

(t) =
ρ(1− ρ)et(1 + ρet)

(1− ρet)3
, for t < − ln ρ. (28)

To evaluate the expected value of X we use the expression for ψ′
X

(t) in
(27) to get

E(X) = ψ′
X

(0) =
ρ(1− ρ)

(1− ρ)2
,

from which we get that

E(X) =
ρ

1− ρ
. (29)

Similarly, we can use (28) to compute the second moment of X:

E(X2) = ψ′′
X

(0) =
ρ(1− ρ)(1 + ρ)

(1− ρ)3
,

from which we get

E(X2) =
ρ(1 + ρ)

(1− ρ)2
. (30)

Finally, to evaluate the variance of X, use (29) and (30) to compute

Var(X) = E(X2)− [E(X)]2 =
ρ(1 + ρ)

(1− ρ)2
− ρ2

(1− ρ)2
,
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Figure 1: Region for Problem 6

from which we get that

Var(X) =
ρ

(1− ρ)2
.

�

6. A device runs until either of two components fails, at which point the device
stops running. The joint density function of the lifetimes of the two components,
both measured in hours, is

f(x, y) =
x+ y

8
, for 0 < x < 2 and 0 < y < 2;

and 0 elsewhere.

What is the probability that the device fails during its first hour of operation?

Solution: We want to compute the probability that either component fails
within the first hour of operation; that is the probability of the event E given
by

E = (0 < X < 1) ∪ (0 < Y < 1).

The event E is pictured as the shaded region in Figure 1.
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The probability of E is given by

Pr(E) =

∫∫
E

f(x, y) dxdy

=

∫ 1

0

∫ 2

0

x+ y

8
dydx+

∫ 2

1

∫ 1

0

x+ y

8
dydx

=
1

8

(∫ 1

0

[
xy +

y2

2

]2
0

dx+

∫ 2

1

[
xy +

y2

2

]1
0

dx

)

=
1

8

(∫ 1

0

(2x+ 2) dx+

∫ 2

1

(
x+

1

2

)
dx

)

=
1

8

([
x2 + 2x

]1
0

+

[
x2

2
+
x

2

]2
1

)
,

so that Pr(E) =
1

8
(3 + (3− 1)) =

5

8
. Thus, the probability that the device

fails during its first hour of operation is 62.5%. �

7. Let M(t) denote the number of mutations in a bacterial colony that occur
during the interval [0, t], assuming that M(0) = 0. Suppose that M(t) has a
Poisson(λt) distribution, where λ > 0 is a positive parameter.

(a) Give an interpretation for λ.

Answer: Since we are assuming that M(t) ∼ Poisson(λt), for all
t > 0, where λ > 0, the expected number of mutations in the time
interval [0, t] is

E(M(t)) = λt, for t > 0.

Thus,

λ =
E(M(t))

t
, for t > 0,

gives the average number of mutations per unit of time. �

(b) Compute the probability that no mutations occur in the interval [0, t].

Solution: Since we are assuming that M(t) ∼ Poisson(λt), for all t > 0,
where λ > 0, the pmf of M(t) is given by

p
M(t)

(k) =


(λt)k

k!
e−λt, if k = 0, 1, 2, . . . ;

0, elsewhere.
(31)
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Thus, the probability of no mutations in the interval [0, t] is

Pr(M(t) = 0) = p
M(t)

(0) = e−λt, for t > 0, (32)

where we have used the pmf of M(t) in (31). �

(c) Let T1 denote the time that the first mutation occurs. Find the distribution
of T1.

Solution: Observe that, for t > 0, the event (T1 > t) is the same as the
event (M(t) = 0); since, if t < T1, there have have been no mutations in
the time interval [0, t]. Consequently,

Pr[T1 > t] = Pr[M(t) = 0] = e−λt,

where we have used (32). Thus,

Pr(T1 6 t) = 1− Pr(T1 > t) = 1− e−λt, for t > 0,

by the complement rule of probability. We then have that the cdf of T1 is

F
T1

(t) =

{
1− e−λt, for t > 0;

0 for t 6 0.
(33)

It follows from (33) that the pdf for T1 is

f
T1

(t) =

{
λe−λt, for t > 0;

0 for t 6 0,

which is the pdf for an exponential distribution with parameter β = 1/λ;
thus,

T1 ∼ Exponential(1/λ).

�

8. A computer manufacturing company conducts acceptance sampling for incom-
ing computer chips. After receiving a huge shipment of computer chips, the
company randomly selects 800 chips. If three or fewer nonconforming chips
are found, the entire lot is accepted without inspecting the remaining chips in
the lot. If four or more chips are nonconforming, every chip in the entire lot
is carefully inspected at the supplier’s expense. Assume that the true propor-
tion of nonconforming computer chips being supplied is 0.001. Estimate the
probability the lot will be accepted.
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Solution: Let X denote the number of nonconforming chips found in the ran-
dom sample of 800. We may assume that the tests of the chips are independent
trials. Thus,

X ∼ binomial(n, p),

where n = 800 and p = 0.001. We want to estimate Pr(X 6 3).

Since n is large and p is very small, we may use the Poisson approximation to
the binomial distribution to get

Pr(X 6 3) ≈ Pr(Y 6 3), where Y ∼ Poisson(0.8).

It then follows that

Pr(X 6 3) ≈ e−0.8 + (0.8)e−0.8 +
(0.8)2

2
e−0.8 +

(0.8)3

6
e−0.8 =̇ 0.9909;

thus, the probability the lot will be accepted is about 99.09%. �

9. A company manufactures a brand of light bulb with a lifetime in months that is
normally distributed with mean 3 and variance 1 . A consumer buys a number
of these bulbs with the intention of replacing them successively as they burn
out. The light bulbs have independent lifetimes. What is the smallest number
of bulbs to be purchased so that the succession of light bulbs produces light for
at least 40 months with probability at least 0.9772?

Solution: Denote the lifetimes of the light bulbs by T1, T2, T3, . . ., so that

Ti ∼ normal(3, 1), for i = 1, 2, 3, . . . ,

are independent random variables measured in months. The total duration of

n light bulbs is
n∑
k=1

Tk. We want to find the smallest n so that

Pr

(
n∑
k=1

Tk > 40

)
> 0.9772. (34)

Since the Ti’s are independent, normally distributed, it follows that

n∑
k=1

Tk ∼ normal(3n, n),

it then follows that
n∑
k=1

Tk − 3n

√
n

∼ normal(0, 1). (35)
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Using the information in (35), we can write the estimate in (34) as

Pr

(
Z >

40− 3n√
n

)
> 0.9772,

where Z ∼ normal(0, 1), or

1− F
Z

(
40− 3n√

n

)
> 0.9772,

form which we get

1− F
Z

(
−3n− 40√

n

)
> 0.9772. (36)

Using the symmetry for the pdf of standard normal distribution we can rewrite
(36) as

F
Z

(
3n− 40√

n

)
> 0.9772. (37)

Since the cdf of Z is strictly increasing, it has an inverse function F−1
Z

. Applying
the inverse function to both sides of (37) we obtain

3n− 40√
n
> F−1

Z
(0.9772). (38)

An approximation for F−1
Z

(0.9772) on the right–hand side of (38) can be ob-
tained using the NORM.INV function in MS Excel. We then get that, approxi-
mately, the inequality in (37) is satisfied if

3n− 40√
n
> 1.9991. (39)

To find the smallest value of n for which (39) is satisfied, we solve the inequality
in (39) to get n > 16. Thus, the smallest number of bulbs to be purchased so
that the succession of light bulbs produces light for at least 40 months with
probability at least 0.9772 is 16. �

10. A random walk on the integer points on the x–axis begins at x = 0. At each
step, the random walker is equally likely to move one unit to the left or to the
right. Furthermore, the choice to move to the left or to the right is independent
of the choices made in previous steps. Use the central limit theorem to estimate
the probability that the random walker will be 10 units or more away from the
origin after 100 steps.
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Solution: Let Sk denote the distance (either +1 or −1) that the random walker

travels at the kth step, for k = 1, 2, 3, . . .. Then, Sk has a pmf given by

p
Sk

(s) =



1

2
, if s = −1;

1

2
, if s = +1;

0, elsewhere.

(40)

We assume that S1, S2, S3, . . . are mutually independent.

Using the pmf in (40) we compute the expected value of each Sk to be

E(Sk) = (−1)
1

2
+ (+1)

1

2
= 0;

so that,
µ = 0. (41)

Similarly, the second moment of each Sk is

E(S2
k) = (−1)2

1

2
+ (+1)2

1

2
= 1.

Consequently, the variance of each Sk is

Var(Sk) = E(S2
k)− [E(Sk)]

2 = 1,

where we have used (41). Thus,

σ2 = 1. (42)

The location of the random walker after n steps is then the random variable

Xn =
n∑
k=1

Sk, for n = 1, 2, 3, . . . , (43)

since the random walker starts at x = 0.

We would like to use the central limit theorem to estimate the probability

Pr(|Xn| > 10), where n = 100, (44)
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and Xn is given in (43).

First, use the complement rule of probability to rewrite (44) as

Pr(|Xn| > 10) = 1− Pr(|Xn| < 10),

or
Pr(|Xn| > 10) = 1− Pr(|Xn| 6 9), (45)

since Xn is a discrete random variable with integer values.

We estimate the right–most probability in (45)

Pr(|Xn| 6 9) = Pr(−9 6 Xn 6 9),

or, using the continuity correction,

Pr(|Xn| 6 9) = Pr(−9.5 < Xn 6 9.5), (46)

for n = 100.

We can rewrite (46) as

Pr(|Xn| 6 9) = Pr

(
−0.95 <

Xn − nµ√
nσ

6 0.95

)
, (47)

where we have used (41) and (42), and set n = 100.

Applying the central limit theorem, we obtain from (47) that

Pr(|Xn| 6 9) ≈ Pr (−0.95 < Z 6 0.95) , where Z ∼ normal(0, 1), (48)

and n = 100.

It follows from (48) that

Pr(|Xn| 6 9) ≈ F
Z
(0.95)− F

Z
(−0.95) where Z ∼ normal(0, 1), (49)

and n = 100.

Using the NORM.DIST function in MS Excel we obtain from (49) the estimate

Pr(|Xn| 6 9) ≈ 0.8289− 0.1711,

or
Pr(|Xn| 6 9) ≈ 0.6578. (50)

Combining (45) and (50) we obtain the estimate

Pr(|Xn| > 10) ≈ 1− 0.6578,

or
Pr(|Xn| > 10) ≈ 0.3422.

Thus, the probability that the random walker will be 10 units or more away
from the origin after 100 steps is about 34.22%. �


