
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

SIAM J. APPL. MATH. c© 2011 Society for Industrial and Applied Mathematics
Vol. 71, No. 5, pp. 1821–1848

A MATHEMATICAL MODEL FOR FORCE GENERATION AT THE
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Abstract. In this paper we construct and analyze a mathematical model for kinetochore (Kt)
motors operating at the chromosome/microtubule interface. Motor dynamics are modeled using a
jump-diffusion process that incorporates biased diffusion due to the binding of microtubules (MTs)
by Kt binder elements and thermal ratchet forces that arise when the polymer grows against the
Kt plate. The resulting force-velocity relationships are nonlinear and depend on the strength of
MT binding at Kts, as well as the spatial distribution of binders and of MT rate-altering enzymes
inside the Kt. In the case when Kt binders are weakly bound and spaced with the same period
as the MT binding sites, the numerical results for the motor force-velocity relation and breaking
loads are in complete agreement with our approximate analytic solutions. We show that in this limit
motor velocity depends directly on the balance of polymer tip polymerization/depolymerization
rates and is fairly insensitive to load variations. In the strong binding regime, the motor can support
attachment for large Kt loads but responds with smaller velocities, independent of the polymer tip
dynamics. When the Kt binders are redistributed with spacing off-register from the MT lattice
period, our numerics match our analytical velocity results independent of binding strength at Kts;
motor velocities do not decrease in response to binding strength variation in this case.
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1. Introduction. Molecular motor enzymes that harvest the chemical energy of
adenosine triphosphate (ATP) hydrolysis to move unidirectionally are used in various
cellular processes. However, cells sometimes make use of mechanisms for motion
that do not involve ATP-dependent molecular motors. Cellular protrusions such as
filopodia and lamellipodia, for example, do not appear to involve molecular motors
but instead use thermal ratchets in conjunction with dynamic polymers to generate
motion [13]. Another example comes from mitosis, where chromosomes move by
tethering to the dynamic tips of microtubules (MTs) in an ATP-independent fashion
[1], [4]. The mechanisms underlying this dynamic coupling of chromosome movement
to attached polymerizing/depolymerizing MTs is not well understood.

A chromosome moves by attaching to MT plus ends with the help of specialized
macromolecular complexes called Kts. For each chromosome arm, a single Kt complex
that can bind either one or several MTs at once is assembled on the chromatid. MTs
are hollow cylindrical structures that contain 13 linear protofilaments composed of
α-β tubulin dimers. During mitosis MTs stochastically transition between growth
and shortening states both when they are attached (kMTs) or not attached to a
kinetochore [1]. For a polymerizing MT, guanosine triphosphate (GTP)-tubulin is
added at the growing end; these dimers have a preferred flat orientation relative to
the polymer lattice. Subsequently, GTP-tubulin is hydrolyzed with some time delay
into guanosine diphosphate (GDP)-tubulin, which prefers a bent conformation. Inside
the lattice, lateral tubulin interactions hold the monomers in a straight conformation
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with the energy of hydrolysis stored as strain. When the lateral interactions are lost,
the strain is released so that the ends of depolymerizing MT protofilaments bend and
the MT tips become gently flared.

Two important motility characteristics of chromosome movement have been ob-
served experimentally. First, chromosome movement has been shown to be coupled to
the polymerization/depolymerization state of an inserted MT [10] with velocities de-
pendent on the balance of kMT tip polymerization/depolymerization rates. Second,
Kts that are attached to a spindle pole by tethering to a kMT display toward and
away motion with similar speeds [16] indicating that Kt motors are fairly insensitive
to variations in load.

Several theoretical models that propose various force-generation mechanisms at
Kts have been put forward. These models can be separated into two distinct classes:
(1) biased diffusion models, and (2) forced walk models. Each model uses variations
in Kt motor (coupler) geometry and size to convert the energy of Kt-MT interactions
into useful work [7].

The first model for chromosome attachment, initially advanced by Hill [5], uses
a biased diffusion mechanism. Hill’s model proposes that movement is facilitated by
a rigid array (so-called sleeve) of weak binding sites that diffuse on the lattice of a
kMT. An increased overlap between the sleeve and the lattice is favorable due to free
energy decrease from the attachment of more bonds between the sleeve coupler and
the MT. As the MT shortens, sleeve diffusion relocates the bonds so that overlap is
preserved, generating poleward motion, i.e., biased diffusion. The key aspects of this
model are that it allows for continuous attachment for both growing and shortening
MTs, and also produces speeds that are fairly insensitive to load, in good agreement
with experimental data.

Forced walk models use the force of flaring of depolymerizing MT tips in conjunc-
tion with force couplers (such as rings) built to resist protofilament outward bending
in order to generate depolymerization-coupled movement [11]. If constructed appro-
priately, these motors can track depolymerizing tips efficiently. However, attachment
cannot be maintained when a polymer transitions into a polymerizing state (with blunt
ends), nor do velocities remain constant for varying loads. Therefore these types of
motors fail to capture the full range of chromosome motions seen experimentally.

Recent experiments indicate that binding at Kts is weak and that diffusion may
play a significant role in movement [14], [17]. These results seem to support a biased
diffusion mechanism but also provide new data that require a more comprehensive
treatment of the biased diffusion mechanism at play. Hill’s model uses a discrete
Markov chain model to show that attachment can be maintained at steady state for a
Kt attached to a slowly depolymerizing tip. This work was extended by [6] to account
for polymer growth inside the sleeve. In both cases, the transition rate assumptions are
valid only in the high activation barrier limit, and model implementation into a larger
scale mitosis model requires time consuming numerical simulations. Furthermore,
for the biased diffusion models that have been studied thus far there has been no
inclusion of polymerization thermal ratchet effects that arise when the inserted kMT
grows against the Kt plate. Also, to our knowledge, the biased diffusion model has
not been studied when there are variations in the spatial distributions of Kt binders
on the MT lattice.

The present paper is aimed at developing a mathematical model for Kt motors
that incorporates a biased diffusion mechanism but also takes into account several
features of Kt motors not addressed in previous biased diffusion models. This paper
is organized as follows. In section 2 we state model assumptions and derive model
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equations. Then we separate our study into two parts. In the first part of the paper
(sections 3 and 4) we consider the case when the spacing between the Kt binders and
the MT lattice binding sites are integer multiples of each other (in-register case); in
the second part (sections 5 and 6) we examine the case when binder spacing is not an
integer multiple of the MT lattice binding site spacing (off-register case). In section 3
we find numerical solutions for system breaking loads and the force-velocity relation
when the strength of binding between the motor and the MT lattice is varied. In
section 4 we use homogenization to find analytical expressions for the breaking loads
and the force-velocity relation in the limit of low unit activation energy for binding.
Finally, in sections 5 and 6 we repeat our simulations and calculations from sections
3 and 4 for the off-register case.

2. Mathematical model. Based on recent structural data [1], [9], it is assumed
that a Kt motor consists of a collection of fibers extending from the Kt plate, each
with multiple binding attachments (motor binders) that can weakly bind onto the
lattice of an inserted MT; see Figure 2.1. These fibers form a structure analogous to
the rigid sleeve of Hill, but they are assumed to be sufficiently flexible so that they
can attach to the flaring MTs. The MT lattice is assumed to have one motor binder
binding site per tubulin dimer. Thus, each binder has an additional preference to
attach to a specific binding site after associating with the MT lattice.

Fig. 2.1. A schematic of the Kt motor model components. The Kt is composed of several binder
fibers which are connected to the Kt plate on one end and can bind the MT lattice. For a Kt motor,
N binders are uniformly spaced a distance s apart from one another along the MT lattice, from
x = 0 to x = Ns. The attached MT polymer is dynamic, and the tip polymerizes/depolymerizes
with prescribed rates α(x), β(x).

Since a motor binder is assumed to be weakly bound to an MT, the Kt binders
experience thermal motion (diffusion) on the lattice of an attached MT. However,
since the binders are physically linked to each other on the fibers, the entire coupler
experiences one-dimensional diffusion on the polymer lattice.

Finally, a polymer embedded in the Kt motor can grow/shorten with prescribed
polymerization/depolymerization rates, specified below. We also assume that if due
to thermal motion the Kt plate is pushed against the polymer tip, polymerization is
prevented by the lack of space, while the energy of polymerization is sufficiently large
so that a tubulin monomer is not subsequently cleaved [13].
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To describe the motion of the Kt motor, we suppose that motion is one-dimensional
along the horizontal x-axis. The motor position variable, x, marks the distance be-
tween the polymer tip and the coupler end distal to the Kt plate. Thus, the position
axis starts at the coupler entry point (x = 0 nm) and extends to the Kt plate (x = L);
see Figure 2.1.

In the viscous-dominated limit, the motor system can be modeled with a one-
dimensional jump-diffusion process described by the stochastic differential equation
(Langevin equation)

(2.1) dx(t) =
1

ν
(−Ψ′(x) − F )dt+ σD(x(t))dWt + δdNα(t) + δdNβ(t),

where x(t) represents the position of the polymer tip relative to the coupler; Nα(t)
and Nβ(t) are independent homogenous Poisson processes with amplitudes δ (tubulin
size) and position dependent rates α(x) and β(x), which govern MT tubulin addition/
removal, respectively; and Wt is standard white noise applied to the motor with
amplitude σD(x(t)). The term Ψ′(x) represents polymer lattice binding forces, F
describes loads on the Kt motor, and ν is the effective drag coefficient for the coupler.

Binding interactions between the coupler and the polymer are characterized by the
potential function, Ψ(x). We construct this function by envisioning the MT polymer
as a semi-infinite linear chain of monomer beads that are rigidly connected. For an
MT with 13 protofilaments and 8 nm long tubulin dimers, the monomer size in the
linear chain is δ = 8/13 nm. Individual binders can attach to the monomer beads with
potential energy function ψ(x), as shown in Figure 2.2. The net energy associated
with polymer binding by the motor is the sum of the potential energy of all attached
binders,

(2.2) Ψ(x) =

N∑
n=0

ψ(x − ns).

The unit energy terms ψ(x) in the sum are shifted by an arbitrary amount s to account
for the offset between consecutive Kt binders. We use

(2.3) ψ(x) =
b

2
sin

(
2πx

δ

)(
1 + tanh(λ1x)

)
− a

2

(
1 + tanh(λ2x)

)
,

with λ1 � λ2. An exact representation of the function Ψ(x) can be given; however, it
is more convenient for computational purposes to use an approximate representation
for the well, which we provide in the following sections.

In our analysis we consider two cases for the shift parameter s: (a) s = δ, in
which case the period of the binders is the same as the MT lattice binding site period
(in-register), and (b) s = κ̄δ, where κ̄ is not an integer (off-register). In the second
case, we are interested in κ̄ > 1 since for these values the number of linkers that
can bind the MT is in good agreement with the binder numbers recently predicted in
experimental studies [14].

For this model binding involves two steps: first binder association with the poly-
mer and then binder transition on the lattice due to additional preference for polymer
binding sites. Therefore, for ψ(x) we assume that for each new binding interaction
established between the binders and the polymer, the system free energy is lowered
by the amount “−a”; see Figure 2.2. Once one binder is engaged, it then has to hop
between δ separated binding sites on the MT lattice, which produces the periodic part
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Fig. 2.2. Diagram of potential well components functions, ψ(x). The energy function becomes
periodic when a binder is bound to the MT due to the polymer lattice binding site periodicity.

of the unit energy function ψ(x). Each thermally induced hopping event of the linkers
on the polymer lattice has to overcome a unit potential energy barrier corresponding
to the energy needed for existing bonds to break and a new one to reform. We de-
note the barrier by “b” in the well; see Figure 2.2. While the kMT increases overlap
with the Kt motor, more bonds are established so that total system free energy in Ψ
decreases in multiples of a; however, more bonds must also be broken so that the net
potential barrier increases by some multiple of b; see Figure 2.3. The rate of increase
in the net barrier for Ψ depends on the overlap parameter s. When s = δ, the net
barrier increases linearly, since for each attachment event exactly one bond must be
broken to readjust the overlap. If, on the other hand, s = κ̄δ, then the net activation
barrier grows more slowly than linear as overlap increases. In both cases, we obtain
a corrugated well Ψ(x) that has the net effect of a drift force that biases the diffusion
of the polymer further inside the coupler.

Fig. 2.3. Diagram of the potential energy well Ψ(x) for varying s. (A) The potential energy well
for the in-register well with binder spacing s = δ. (B) The potential energy well for the off-register
well with s = κ̄δ.

It is possible that the polymer tip moves either by diffusion or polymerization past
the last coupler binder. At this position all the available binding sites are occupied, so
there is no gain for the system to bias thermal motion in either direction; further kMT
insertion into the coupler does not lower the free energy. Nonetheless, if the coupler



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1826 BLERTA SHTYLLA AND JAMES P. KEENER

Fig. 2.4. Kt MT tip rate functions. The polymerization rate is given by α(x), and β(x) describes
the depolymerization rate. Parameter values are given in Table 2.1.

moves in this region, it must cross the potential barrier associated with breaking all
N1 or N2 bonds. Consequently, the potential well function Ψ(x) loses its tilt and
becomes periodic past the last binder position at x = Nis nm as shown in Figures
2.3(A) and 2.3(B). The numbers N1, N2 are chosen such that the motor binders are
uniformly spread along ≈ 40 nm for both the in-register and off-register Kt motors.

Spindle forces acting on a chromosome create mechanical stress on Kts, which in
turn produces load, F , on the motor. With our sign convention, F > 0 pushes on a Kt
in such a way as to increase the distance between the polymer tip and the Kt (i.e., to
decrease x), whereas F < 0 favors polymer tip insertion toward x = L, increasing x.

Finally, the tip of the inserted polymer is dynamic and can grow or shorten with
prescribed rates that vary with the position of the tip relative to the Kt coupler. A
plot of the rates is shown in Figure 2.4. We assume that a powerful depolymerase
(such as MCAK [1]) is enriched at the coupler end proximal to the Kt plate. Hence, we
choose a depolymerization rate that depends on the position of the kMT tip relative
to the motor with β(x) = β0 + β2−β0

1+exp(−λ(x−β1))
, where λ controls the steepness of

the transitions and β1 < Nis. On the other hand, we keep the polymerization rate
constant independent of the MT tip position relative to the coupler, except for the
restriction that if the polymer tip is located less than δ away from the x = L boundary,
then no new monomers can be inserted with α(x) = α0

1+exp(λ(x−α1))
. We note here that

we have not chosen the polymerization rate to be a Heaviside function as in [13]. This
is because, we believe, it is unlikely that the polymerization rate drops instantaneously
at the x = L−δ position if one takes into account random fluctuations in MTmonomer
size. Thus, we assume that a space slightly more than δ between the polymer tip and
the KT plate is necessary for the MT to be able to polymerize at the full rate α0.
Finally, the constant basal polymerization and depolymerization rates α0, β0 reflect
the presence of several Kt enzymes that have been shown to favor slow kMT growth
or shortening [1].

The stochastic differential equation in (2.1) corresponds to the forward Chapman–
Kolmogorov equation [3]

∂p(x, t)

∂t
= − 1

ν

∂

∂x

(
V ′(x)p(x, t)

)
+D

∂2

∂x2
p(x, t) + α(x − δ)p(x− δ, t)(2.4)

+ β(x+ δ)p(x + δ, t)− (α(x) + β(x))p(x, t),
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where p(x, t) is the probability density function for the relative position of the attached
MT tip with respect to the coupler, x, and V ′(x) = −Ψ′(x) − F . For the additive
Gaussian noise we take σD(x(t)) =

√
2D, where D is the diffusion coefficient of the

coupler, calculated according to the Einstein relation D = kBT/ν. The value used
for this coefficient agrees with coefficients chosen in previous models [5], [6].

To complete the specification of the problem, we impose a reflecting boundary
at x = L, where the Kt wall physically impedes polymer penetration. At x = 0,
we prescribe an absorbing boundary, since if the polymer tip crosses this point, the
coupling connection is broken and not likely to be reestablished. Unless otherwise
stated, the parameters used for calculations in this paper are those in Table 2.1.

Table 2.1

Model parameter values. Some parameters are estimated from parameter ranges reported in
the literature. The specific values chosen here produce motor velocities that are in agreement with
chromosome movement velocities observed in newt lung cells [16].

Parameter Description Value
L Kt thickness 50 nm [1]
δ binding site period on the MT lattice 8/13 nm
ν effective viscous drag coefficient 6 pNs/μm [6]
α0 rate of tubulin subunit addition 80 s−1 [6]
β0 basal rate of tubulin subunit removal 27 s−1 [6]
β2 max. rate of removal of tubulin 27 s−1, 100 s−1 (estimated)
β1 depol. rate transition point 35 nm (estimated)
α1 pol. rate transition point L− 1.6δ (estimated)
a free energy of binding 2.6 kBT [5]
D coupler diffusion coefficient 690 nm/s2 [5][6]
N1 in-register Kt binder number 65
N2 off-register Kt binder number 30

3. In-register well. We approximate the potential well function of the in-
register case with

(3.1) Ψ(x) =

{
f(x)

(
1− cos(2πxδ )

)
+ h(x), x ≤ N1s,

f(N1δ)
(
1− cos(2πxδ )

)
+ h(N1δ), x > N1s,

where f(x) = a
2δ

(
b
ax + C

)
, C = 0.172, and h(x) = −ax

δ . The linear and scalar
coefficients in (3.1) arise because we use a Fourier series to approximate the well
function expression given in (2.2). In what follows we set b = ka and then vary k
to control the relative amplitude of well corrugation, as depicted by the diagram in
Figure 2.3(A).

3.1. Numerical solutions for the mean first passage time and load-
velocity relationship. As is customary for molecular motors, we are interested
in calculating the force-velocity relation. In general, the velocity of the Kt motor
with respect to an outside frame of reference must account for the internal velocity of
the inserted kMT relative to the coupler. However, if the polymer-coupler assembly
has reached an internal equilibrium or steady state (i.e., there is no motion of the
tip relative to the binding sites), the velocity calculation is greatly simplified. This is
because at steady state the ensemble of binding sites plus the polymer is moving with
respect to an outside frame of reference at a velocity that is equal to the balance of
kMT polymerization/depolymerization rates.

Before we start seeking steady state solutions we must recognize an important
fact: with our current boundary conditions a steady state solution of (2.1) does not
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Fig. 3.1. Monte Carlo simulation results for the mean first exit times from x = 0, starting
from x = L. Each curve represents the mean first exit time estimates for a given value of k, with
β2 = 100 s−1. Polymer tips start at x = L at t = 0, and then the measured times for exit from the
left boundary are averaged over 1000 trials for each F . The error bars mark the standard deviation.
The maximum time allotted for exit was Tmax = 800 s. For F < 19 pN exit times exceeded Tmax so
computations were restricted to F ≥ 19 pN.

exist. This is because of the absorbing boundary condition at x = 0, which causes the
polymer to eventually decouple. Nevertheless, if the polymer reaches a metastable
position inside the coupler sufficiently far away from the absorbing boundary, we can
safely approximate the x = 0 position as a reflecting barrier and solve for a steady
state solution of (2.1). One way to determine the validity of this approximation is to
determine the time it takes a polymer to find the absorbing boundary if it starts from
some position in (0, L). Thus, as a first step we formulate and then solve the mean
first exit time problem for the polymer tip of an attached MT.

We let T (x) be the mean time for exit through x = 0, starting from x ≤ L.
Then [3],

(3.2) −1 =
1

ν
V ′(x)∂xT (x)+D∂2xT (x)+α(x)(T (x+δ)−T (x))+β(x)(T (x−δ)−T (x))

with boundary conditions T (0) = 0, T ′(L) = 0.
The delay differential equation in (3.2) cannot be solved analytically; however,

we can obtain an estimate for the solutions numerically. For our numerical studies we
simulate a large number of Monte Carlo trials (1000 trials) of the Langevin equation
in (2.1) for various model parameter values. For each trial we record the exit time,
and then the results are averaged over the total number of paths tried.

In Figure 3.1 we show a plot of the Monte Carlo trials for the mean first exit
times of the system for various loads F and activation energy levels, measured by the
parameter k.

From Figure 3.1 we see that increases in motor loads significantly decrease the
time for exit from the coupler. This is expected since forces F > 0 decrease x by
counteracting the well’s attractive forces, thus making it easier for the motor to escape
through the absorbing boundary. From our simulations, we observe that for a wide
range of loads the polymer does not exit the coupler for long times as compared to
the relaxation time, i.e., 〈T (L)〉 > 100 s, whereas the time to relaxation to a steady



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

A MATHEMATICAL MODEL FOR FORCE GENERATION 1829

state is ≈ 1 s. Indeed, in Figure 3.1 simulations are shown only for F ≥ 19 pN due to
the large values of the first passage times that result when F is smaller than 19 pN.
Thereby, a steady state approximation is appropriate for forces with large exit times.
Further, when the activation energies increase, the system takes longer to escape from
the absorbing boundary, as shown by the upward shifts in the mean first exit time
curves in Figure 3.1 as k increases. These shifts can be explained by observing that for
higher k it takes more energy for the polymer to detach from the coupler and hence
more force is necessary to pull the polymer out of the chamber. For low activation
energies (k = 0.001), the system is more “slippery” with metastable states occurring
for a smaller range of loads with F ≤ 18 pN. Our range of forces supported by the
motors is in agreement with the predictions of [6]. Measurements of anaphase forces
in meiotic grasshopper spermatocytes have produced maximal chromosomal forces on
the order of 700 pN [12]. With our force estimates, we predict that for the total
number of motors engaged in these chromosomes, we have 35 × 18 pN = 630 pN,
which is consistent with experimental observations. Hence, we conclude that it is
necessary to restrict the range of loads (F ≤ Fbreak ≈ 18 pN) for which the system
can be examined at steady state and that the activation energies for the binding sites
can significantly affect the range of forces that the motor can support.

Now that we have a range of loads for which the system equilibrates, we seek to
find the kMT tip positions at steady state for various amounts of motor loads and
Kt-MT binding strengths. The steady state positions can be obtained by solving the
delay differential equation

0 =− 1

ν

∂

∂x
(V ′(x)p(x, t)) +D

∂2

∂x2
p(x, t) + α(x − δ)p(x− δ, t)(3.3)

+ β(x+ δ)p(x + δ, t)− (α(x) + β(x))p(x, t).

Equation (3.3) cannot be solved analytically, but numerical solutions of the steady
state distributions can be easily obtained with Monte Carlo simulations of the Langevin
equation in (2.1). For each trial, we allow the system to relax into steady state and
then record the final position of the kMT tip after some prescribed amount of time.

In Figures 3.2 and 3.3 we have plotted normalized histograms of the system at
steady state for varying values of the parameter k and force F . In Figure 3.2 the
plots are generated for a depolymerizing motor (β2 > α0), whereas in Figure 3.3 the
plots are generated for a polymerizing motor (β2 < α0). In both rate regimes, as
the activation energy increases, the polymer settles on average closer to x = x0, the
position where the kMT tip rates equilibrate with one another so that α(x0) = β(x0)
(x0 ≈ β1 for a depolymerizing motor, and x0 ≈ α1 for a polymerizing motor). For the
highest barrier tried with k = 0.08, one immediately notices that the distributions
are centered exactly at x0. This can be explained by noting that, for high activation
barriers, the only way the system can transition down the potential well landscape is
by jumping via the net Poisson jump rates given that the diffusion rate is too small
to overcome the well barriers. Also, since the Poisson jumps control the equilibrium
positions when k is large, it follows that the motor steady state positions are insen-
sitive to motor loads, which when varied only alter the tilt and thus the minimum
of the potential well function. On the other hand, if the well barriers are low, then
diffusion is sufficient to transition the polymer tip to the minimum energy state of
Ψ(x) independent of the polymerization/depolymerization rates (as long as α, β are
small). Further, in the low k limit, the positions where the distributions center in the
well depend on the amount of load on the motor. As the pulling loads (F > 0) on the
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Fig. 3.2. Normalized histograms of the numerical simulation results with varying activation
barriers and motor loads for a depolymerizing motor with β2 = 100 s−1 > α0 = 80 s−1. The
histograms are generated by gathering simulation statistics for 1000 trials after relaxation into steady
state.

Fig. 3.3. Normalized histograms of the numerical simulation results with varying activation
barriers and motor loads for a polymerizing motor β2 = 27 s−1 < α0 = 80 s−1. Each histogram is
generated by gathering simulation statistics for 1000 trials after relaxation into steady state.
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Fig. 3.4. Numerical load-velocity relationships for varying k. Velocities are obtained by av-
eraging the numerical trial velocities, which are calculated by sampling the forward and backward
jumps of the MT tip after the system relaxes into steady state. (A) Force-velocity calculations for
a depolymerizing motor with β2 = 100 s−1 > α0 = 80 s−1. (B) Force-velocity calculations for a
polymerizing motor with β2 = 27 s−1 < α0 = 80 s−1.

motor increase, the well loses its tilt and the peaks of the distributions relocate closer
to x = 0. Whereas as the pushing loads increase (F < 0) in magnitude, the overlap
bias is increased and the steady state distributions are pushed closer to the x = L
boundary (see the k = 0.001 panels in Figures 3.2 and 3.3). For intermediate k = 0.04,
we see that the distributions are sensitive to the loads while also settling closer to x0.
In summary, we deduce that the position of the peaks of the steady state probability
distributions of kMT tips depend on the height of the unit activation barrier, k. If k
is sufficiently small, then the distributions also depend on the motor loads, F .

We are now ready to calculate motor velocities. As noted at the beginning of this
section, at steady state, the velocity of the system with respect to an outside frame of
reference (let this frame have horizontal displacement measured by y) depends entirely
on the net balance between the polymerization and depolymerization rates,

(3.4) v = δ

∫ (
α(y)− β(y)

)
ps(y)dy,

with ps(y) the steady state distribution probability density for the position of the
kMT tip. Equation (3.4) tells us that the motor velocity can be easily obtained
by calculating the balance of the jump rates at the kMT tip steady state position.
Therefore, even though we do not currently have analytic expressions for ps(y), we can
obtain velocity values for a given load F from Monte Carlo simulations by sampling
the forward and backward jump rates after the system reaches an equilibrium.

In Figure 3.4 we show load-velocity calculations from the simulations for various
values of k.

From the load-velocity curves plotted in Figure 3.4 we see that the system pro-
duces distinct regions of constant velocity for a wide range of pulling loads when k
is small (k ≤ 0.03) for both polymerizing and depolymerizing motors. This can be
explained by examining the steady state distributions in Figures 3.2 and 3.3. For low
activation barriers, as the forces on the motor vary, the steady state distributions expe-
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rience shifts on the x-axis. However, since at steady state the velocity depends only on
the kMT polymerization/depolymerization rates, if the difference between α(x) and
β(x) is the same in the new shifted equilibrium position, then the motor velocity does
not change. Consequently, there are flat velocity regions in the force-velocity curves
for small k and F > 0 that keep the distributions in areas of constant net kMT rates.
On the other hand, if we increase k, the flat regions in the force-velocity curves start
to disappear. This happens because as k increases, the steady state distributions tend
to center closer to the Poisson rate transition points β1, α1. Being already located in
sensitive regions, small perturbations in load can easily push the tip distributions on
either side of the rate transition points and thus considerably disrupt the α(x), β(x)
contribution to the velocity. Thus, the motors are more sensitive to loads, and the
force-velocity relations become more uniformly monotone as k is increased as shown
in Figure 3.4. Indeed, if we increase k enough, the steady state distributions become
immobilized and center at exactly the rate transition points so that motor velocities
decay to almost zero, resulting in the motor being stalled independent of load (see
the force-velocity curves for k = 0.08).

The nonlinear force-velocity relations for k ≤ 0.03 shown in Figure 3.4 are quite
different from the typical linear force-velocity relations obtained for conventional mo-
tors such as kinesin and dynein. As noted above, the constant-velocity regions depend
directly on the balance of kMT rates for a Kt motor. It follows that if we change
the concentration of the kinase inside the motor by lowering β2, for example, then
the force-velocity relation for the motor will shift down the velocity axis to reflect the
change in the rate balance (compare the force-velocity curves for k ≤ 0.03 in Figures
3.4(A) and 3.4(B)). Thus, variations in kMT depolymerization rates in the low k
regime produce shifts in the force-velocity relations. This shift is significant when
β2 < α0 since motor velocities reverse signs, signaling a change in motor direction.
This means that our motor model displays chemically controlled bidirectionality in-
duced by modification of the depolymerase concentrations at the Kt. This feature
of chemical control can be very useful when modeling chromosome movement during
mitosis where both chemical and mechanical signals can create feedback for Kt motion
control [15].

Next, we consider the monotone regions of the force-velocity relations for k small.
By our convention for F values, if F < 0, the motor operates in the thermal ratchet
regime. Under a large pushing load, the gap between the polymer tip and the Kt plate
becomes very small, with steady state distributions equilibrating less than δ away from
x = L. In this scenario, since there is little space between the polymer and the barrier,
polymerization against the Kt plate is insignificant and motor velocities limit to δβ2.
If β2 is large, then motors experience rapid increments in depolymerizing velocity
as F becomes more negative; see Figure 3.4(A). In the polymerizing motor case
shown in panel (B) of Figure 3.4, this ratcheting effect is particularly prominent since
it indicates that a polymerizing motor eventually transitions into a depolymerizing
state (i.e., reverses direction of motion) when subjected to large negative pushing
loads. On the other hand, if too much pulling load is placed on the motor (F large
and positive), the polymer is pulled out of the chamber and velocities quickly decay
due to steady state distribution shifts in regions where α0 > β0 (note that for the
polymerizing motor shown in Figure 3.4(B) for large F > 0, velocities remain constant
because of our choice of β2 = β0).

In summary, our numerical solutions show that the jump-diffusion model pro-
posed here produces constant motor velocities that are sensitive to kMT tip rate vari-
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ations for weak binding (k small “slippery” regime), in agreement with experimental
observations. We also found that when the activation barriers for detachment are in-
creased, the motor transitions into stationary states where attachment is maintained
against large loads as shown by the mean first exit time calculations. It is possible
that this stalled or “sticky” motor regime is employed in cells where Kts need to
maintain attachment under a significant increase in forces opposing movement. Our
model shows that attachment robustness can be greatly improved by increasing bind-
ing affinities of the Kt binders; however, the robustness is achieved at the expense
of velocity. Experimental work has shown that the inhibition of phosphorylation of
Ndc80 binding filaments by Aurora B kinases at Kts increases the binding affinity of
the linkers to the kMT lattice and also results in Kts being immobilized on the kMT
lattice [2]. Our model predicts that this observed immobility could be the result of
only changes in filament affinity for the kMT lattice, independent of the polymeriza-
tion/depolymerization dynamics of the inserted polymer tip. In the second part of
this paper we will see that variations in the spatial distribution of Kt binders on the
MT lattice can dramatically change motor response to changes in the parameter k.

4. Asymptotic approximation. From the simulations of the jump-diffusion
model, we see that the height of the activation energy barrier between binding sites
can greatly affect motor motion characteristics. However, Monte Carlo simulations
are computationally expensive so it would be useful to explore parameter ranges for
which analytical expressions for the force-velocity relationship can be derived. In
this section we use homogenization theory in order to obtain simpler approximate
analytical force-velocity relation expressions for the Kt motor model.

Since we are ultimately interested in determining the force-velocity relation for
the motor, the equation of interest for approximation is the steady state equation for
the probability density which reads

0 = − 1

ν

∂

∂x

[(
f(x) cos

(
2πx

δ

)
+ r(x)

)′
p(x)

]
(4.1)

+Dpxx(x) −
(
α(x) + β(x)

)
p(x) + β(x + δ)p(x+ δ) + α(x − δ)p(x− δ),

where we have used the expression in (3.1) for Ψ(x) and r(x) = −f(x)− h(x) − Fx.

We start by Taylor expanding the jump terms, which introduces an infinite sum
term in (4.1). Then, using the no flux boundary conditions, we integrate (4.1) once
to obtain

0 = − 1

ν

(
f(x) cos

(
2πx

δ

)
+ r(x)

)′
p(x) +Dpx(x)(4.2)

+
∞∑

n=1

δn

n!

dn−1

dxn−1

((
β(x) + (−1)nα(x)

)
p(x)

)
.

From the numerical solutions of the steady state distributions, we notice that the
solution to (4.2) should contain high frequency periodic oscillations with a slow varying
amplitude. In order to identify equation terms which evolve on different spatial scales,
it is necessary to rescale space in (4.2). We set x = Xy = νDδ

b y, where y is a
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dimensionless variable. In terms of the variable y the steady state equation reads

0 = −
(
f̂(y) cos

(
2πy

ε

)
+ r̂(y)

)′
p(y) + py(y)(4.3)

+ α2

∞∑
n=1

εn−1

n!

dn−1

dyn−1

((
β̂(y) + (−1)nα̂(y)

)
p(y)

)
,

where we identify ε = b
kBT as the small dimensionless parameter and α2 = β0δ

2ν
b .

Also, f̂(y) = f(y)/νD, r̂(y) = r(y)/νD, β̂(y) = β(y)/β0, α̂(y) = α(y)/β0. Note that
this change of variables allowed us to rewrite the oscillatory part of the drift term as
a high frequency periodic oscillator with a slow varying amplitude.

Following the multiscale technique, we now introduce two spatial variables: a
“slow” variable z = y and a “fast” variable σ = y

ε . Immediately, we see that the drift
term in (4.3) contains fast oscillations with a slow varying amplitude.

Next, we treat z and σ as independent variables and by the chain rule, d
dy =

∂
∂z + 1

ε
∂
∂σ . The equation now becomes

0 = −
(
f̂ ′(z) cos(2πσ) + r̂′(z)− 2π

ε
f̂(z) sin(2πσ)

)
p(z) + pz(z) +

1

ε
pσ(z)(4.4)

+ α2

∞∑
n=1

β̂(z) + (−1)nα̂(z)

n!

∂n−1

∂σn−1
p(z, σ)

+ εα2

∞∑
n=2

(n− 1)

n!

∂

∂z

∂n−2

∂σn−2

((
β̂(z) + (−1)nα̂(z)

)
p(z)

)
+O

(
ε2
)
.

As is customary for the multiscale method, we seek a solution that can be written
as an asymptotic series p(z) = p0(z, σ) + εp1(z, σ) +O

(
ε2
)
, where p0(z, σ) represents

the mean field and p1 has zero mean value in z and is periodic in σ, with period 1.
Substituting the expansion for p(z) into (4.4) and collecting same order terms we
obtain the following hierarchy of equations:

O

(
1

ε

)
: 2πf̂(z) sin(2πσ)p0(z, σ) + p0σ(z, σ) = 0,(4.5)

O(1) : 2πf̂(z) sin(2πσ)p1(z, σ) + p1σ(z, σ)(4.6)

−
(
f̂ ′(z) cos(2πσ) + r̂′(z)

)
p0(z, σ) + p0z(z, σ)

+ α2

∞∑
n=1

1

n!

(
β̂(z) + (−1)nα̂(z)

) ∂n−1

∂σn−1
p0(z, σ) = 0.

Finally, the probability densities need to be normalized, with

(4.7) 1 =

∫ L/X

0

(
p0(z, σ) + εp1(z, σ)

)
dz.

We solve (4.5) by direct integration to obtain

(4.8) p0(z, σ) = A0(z) exp
(
f̂(z) cos(2πσ)

)
.
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Next, we examine the infinite sum term in (4.6). For a fixed arbitrary value of z = z0,
we define F (σ) =

∫ σ

0 p0(z0, η)dη. Taylor expansion of F (σ) gives

∫ 1

0

p0(z0, η)dη = F (σ + 1)− F (σ) =

∞∑
n=1

1

n!

∂n

∂σn

(∫ σ

0

p0(z0, η)dη

)
,(4.9)

−
∫ 1

0

p0(z0, η)dη = F (σ − 1)− F (σ) =

∞∑
n=1

(−1)n

n!

∂n

∂σn

(∫ σ

0

p0(z0, η)dη

)
,(4.10)

where we have used the periodicity of p0(z, σ) in σ for a fixed z = z0.

Substituting the expressions from (4.9)–(4.10) into the O(1) equation, we have

O(1) : 2πf̂(z) sin(2πσ)p1(z, σ) + p1σ(z, σ)−
(
f̂ ′(z) cos(2πσ) + r̂′(z)

)
p0(z, σ)(4.11)

+ p0z(z, σ) + α2

(
β̂(z)− α̂(z)

)∫ 1

0

p0(z, σ)dσ = 0.

We solve for the coefficient A0(z) by examining the O(1) equation (4.11). Since we are
looking for a solution p1(z, σ) that is periodic in σ, we impose the following solvability
condition on (4.11):

0 =

∫ 1

0

(
(p1(z, σ)I(z, σ))σ + exp (r̂(z))

(
p0(z, σ) exp(−r̂(z))I(z, σ)

)
z

(4.12)

+ α2

(
β̂(z)− α̂(z)

) ∫ 1

0

p0(z, η)dηI(z, σ)

)
dσ

= −r̂′(z)A0(z) +A′
0(z) + α2A0(z)

(
β̂(z)− α̂(z)

)
I20

(
f̂(z)

)
,

where I(z, σ) = exp(−f̂(z) cos(2πσ)) and I0(f̂(z)) is the integral form of the modified
Bessel function of the first kind.

Therefore,

(4.13) A0(z) = Ĉ exp

(
r̂(z)− α2

∫
I20

(
f̂(z)

)(
β̂(z)− α̂(z)

)
dz

)
.

Finally, in terms of our original variable x, this yields the solution

(4.14) p0(x) = C exp

(
V (x)

kBT
− δν

kBT

∫
I20

(
f(x)

kBT

)(
β(x) − α(x)

)
dx

)
,

where the coefficient C is found from the normalization condition for the probability
densities in (4.7).

Therefore, our approximation for the probability density function at steady state
is

(4.15) p(x) ≈ C exp

(
V (x)

kBT
− δν

kBT

∫
I20

(
f(x)

kBT

)(
β(x) − α(x)

)
dx

)
+O(ε).

With the steady state solutions for the system in (4.15), we can readily calculate
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motor velocities using

v ≈ v0 +O(ε)

(4.16)

= δ

∫ L

0

(
α(x) − β(x)

)
p0(x)dx +O(ε)

= δC

∫ L

0

(
α(x) − β(x)

)
exp

(
V (x)

kBT
− δν

kBT

∫
I20

(
f(x)

kBT

)(
β(x) − α(x)

)
dx

)
dx

+O(ε).

The integral expression for the approximation of motor velocities given in (4.16)
contains a fast oscillating term in the integrand, which creates difficulties in numerical
calculations. We can further simplify the velocity expression by deriving an approxi-
mation for v0(x) using a modification of the method of averaging [8].

To find the velocity, we want to solve the initial value problem

dV (x)

dx
= δ
(
α(x) − β(x)

)
p0(x),(4.17)

V (0) = 0,(4.18)

where we are interested in evaluating V (L).
Using the same rescaling for space with x = Xy, we again introduce the fast and

slow variables y = z, σ = y
ε . With this change of variables the problem reads

dV (z, σ)

dz
= δ
(
α(z)− β(z)

)
p0(z, σ),(4.19)

V (0) = 0.(4.20)

We now assume a solution of the form V (z, σ) = V0(z) + εV1(z, σ) with V1(z, σ)
periodic in σ. Notice that V0(z) represents the mean field so that V1(z, σ) has zero
mean in z. Substituting the expansion into (4.19) and retaining the O(1) terms yields

(4.21)
dV0(z)

dz
+
dV1(z, σ)

dσ
= δ
(
α(z)− β(z)

)
p0(z, σ).

Recalling that V1 is periodic in σ, it follows that

(4.22)

∫ σ

0

(
∂V0(z)

∂z
+
∂V1(z, η)

∂η

)
dη =

∂V0
∂z

σ,

which in turn produces

(4.23)
∂V0(z)

∂z
=

1

σ

∫ σ

0

δ
(
α(z)− β(z)

)
p0(z, η)dη = δ

(
α(z)− β(z)

)
p0(z, σ).

Substituting σ = 1, we obtain the first order approximation to the solution

dV0(z)

dz
= δ
(
α(z)− β(z)

)
exp

(
r̂(z)− α2

∫
I20

(
f̂(z)

)(
β̂(z)− α̂(z)

)
dz

)
(4.24)

×
∫ 1

0

exp
(
f̂(z) cos(2πσ)

)
dσ.
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We immediately recognize that the integral expression in (4.24) is the integral form

of the modified Bessel function of the first kind, I0(f̂(z)); therefore we can now write
an explicit solution for the velocity of the coupler,

v = V (L)(4.25)

= δ

∫ L

0

(
α(x) − β(x)

)
exp

(
r(x)

kBT
− δν

kBT

∫
I20

(
f(x)

kBT

)(
β(x)− α(x)

)
dx

)

× I0

(
f(x)

kBT

)
dx+O(ε).

Next, we observe that the approximate solution, p0(x), is the steady state solution
of the Fokker–Planck equation,

∂p0(x, t)

∂t
= − 1

ν

∂

∂x

[(
V ′(x) − δνI20

(
f(x)

kBT

)(
β(x) − α(x)

))
p0(x, t)

]
(4.26)

+D
∂2

∂x2
p0(x, t),

with appropriate boundary conditions. Thereby, by setting out to derive an asymp-
totic approximation, we have also gained a reduction of the jump-diffusion motor
model into a simpler drift-diffusive model. The advantage of this approach is that
for the approximate drift-diffusive process not only can we calculate the velocity ex-
plicitly, but also the mean first passage time problem is greatly simplified and can
be obtained analytically. In what follows, we derive analytical solutions for the mean
first exit time calculation starting with the approximate drift-diffusion model.

From the Fokker–Planck equation given in (4.26), we obtain the following ordinary
differential equation for the first passage time T (x) at x = 0:

(4.27)
1

ν

(
V ′(x)− δνI20

(
f(x)

kBT

)(
β(x) − α(x)

))
∂xT (x) +D∂2xT (x) = −1

with boundary conditions T (0) = 0, T ′(L) = 0 as before. Note that since the delay
terms do not appear in this case we can use direct integration to obtain the solution
for the mean first exit time

T (x) =
1

D

∫ x

0

exp

(
−V (y)

kBT
+

δν

kBT

∫
I20

(
f(y′)
kBT

)(
β(y′)− α(y′)

)
dy′
)

(4.28)

×
∫ L

y

exp

(
V (z)

kBT
− δν

kBT

∫
I20

(
f(z′)
kBT

)(
β(z′)− α(z′)

)
dz′
)
dzdy.

The underlying assumption for our asymptotic approximation so far has been that
ε is sufficiently small in order for our approximate solutions to be accurate. Recall
that ε = b

kBT , which means that b has to be small and, since b = ka, the parameter
k must be small. This conclusion is in agreement with our intuition, since the jump-
diffusion process we started with can be expected to reduce to a diffusive process we
obtained in (4.26) only if the unit activation barrier in the Ψ(x) term is sufficiently
small, so that the diffusive steps can overcome the Poisson noise. As we show below,
k = 10−3 is sufficiently small for our diffusive approximation to exactly match the
numerics of the full jump-diffusion model.

In Figure 4.1 we have plotted a comparison between the approximate steady state
solutions p0(x) and the histograms we obtained numerically in the previous section
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Fig. 4.1. A comparison of the numerical versus the analytical steady state distributions for
the diffusive approximation of the steady state probability density function for varying loads F and
k = 0.001.

for k = 0.001 for both a polymerizing and a depolymerizing motor. As can be seen
from Figure 4.1, our analytical steady state solutions are in very good agreement with
the numerical simulation of the full jump-diffusion model for small k.

Next, a comparison between the load-velocity relationships from (4.16) and the
numerical calculations for the velocity presented in the previous section is given in
Figure 4.2(A).

Fig. 4.2. (A) Load-velocity relationship comparison between the diffusive approximation v0(x)
and the Monte Carlo simulations for k = 0.001 for a depolymerizing and a polymerizing motor.
For the numerical simulations, bars represent the standard deviation. (B) Load-velocity relationship
comparison between the diffusive approximation load-velocity relationship as given in (4.16) and the
averaged velocity in (4.25) for k = 0.001 and k = 0.01.

From Figure 4.2(A) we see that for small barriers with k = 0.001, the analytic
solution v0 is in excellent agreement with the numerical results obtained for the full
jump-diffusion model. This approximation remains in very good agreement for k =
0.01; however, the plot is not shown for clarity as these plots overlay one another. For
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Fig. 4.3. Mean first exit time calculation for the approximate diffusive model for k = 0.001.
(A) Mean time for exit, T (x) from the boundary x = 0 starting from x, measured in sec for F = 7 pN.
(B) Mean time for exit for F = 15 pN. (C) Mean time for exit for F = 15 pN. (D) Log-log plot
of mean first passage time through x = 0 starting from L = 50 nm versus motor load F. Inset:
Comparison of the analytical solutions with the numerical results.

k > 0.01, the diffusive limit solutions lose their accuracy and thus cannot be used to
compare with the numerical calculations. Further, in panel (B) of Figure 4.2 we see
that the averaged velocity expression in (4.25) is in very good agreement with (4.15)
for k = 0.001 and is also a good approximation for k = 0.01.

In Figures 4.3(A)–4.3(C) we have plotted the mean first exit time solution in
(4.28) for varying force terms F with respect to the initial position x. Notice from the
plots that it takes a very long time for the tip to leave the coupler for small pulling
forces, and thus we consider the system to have reached a metastable state in panels
(A) and (B) of Figure 4.3. However, for larger pulling loads (panel (C)) the exit times
decrease significantly indicating that the forces are approaching the breaking loads
for the motor. Thus, the mean first exit time calculation in the diffusive limit gives
us a way to analytically determine the system breaking loads.

In panel (D) of Figure 4.3 we show a log-log plot of first exit times through x = 0
starting from x = L, with respect to varying load F . From Figure 4.3(D) we observe
that our numerical results from section 3.1 and the analytical solution for the exit
times in (4.28) agree well with each other. Furthermore, panel (D) shows that our
mean first exit time approximation experiences a sharp decline in exit times past
F = 18 pN in agreement with our numerical results for breaking loads.

In conclusion, in this section we have shown that for small k, analytical expres-
sions for the force-velocity relation can be obtained which are in good agreement with
our numerical simulations. The parameter range for which we obtained analytical
approximate solutions falls within the range of experimental predictions for Kt bind-
ing. Recent measurements of the diffusion coefficients of several MT binding proteins
which are involved in Kt-MT binding seem to indicate that their activation energy for
MT binding is indeed very low [17], and thus the diffusive limit we explore here might
be a good approximate model for the interaction of the Kt coupler with a dynamic
microtubule polymer.
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5. The off-register well. So far, we have discussed the case when the spacing
of Kt binders is an integer multiple of the binding site spacing on the MT lattice, δ.
However, the exact geometry of the Kt binder elements on the attached MT lattice
is not yet known. Therefore, alternate scenarios for the spacing between Kt linkers
must be considered. If the Kt binders are not in-register with the binding sites on
the polymer, then the Kt bound coupler linkers need not be all detached for a new
attachment to be established. As a result, the geometry of the potential well is altered
and two well parameters are important: s, the linker spacing which establishes the
period of free energy drops due to binding events in the well, and δ, which establishes
the period of transitions between the individual activation barriers. In the remainder
of this paper we examine the case in which the linkers are spaced with distances that

are not integer multiples of δ with s = κ̄δ = 1
κδ =

3
√
2

2 δ: the off-register well case.
We use a Fourier series approximation for the off-register well Ψ(x), which reads

(5.1) Ψ(x) =

⎧⎪⎪⎨
⎪⎪⎩
−aC1 sin

(
2πx

s

)
+ bC2g(x)− bC3 cos

(
2πx

s

)
+ h(x), x ≤ N2s,

−bC3 + bC2g(x) + h (N2s) , x > N2s,

with h(x) = −a
2C20x and g(x) = cos(2π(x−(N2+1/2)s)

δ ) − cos(2π(x+s/2)
δ ). The coef-

ficients from the approximation are as follows: C20 = 1.5, C1 = 0.17, C2 = 2.7,
C3 = 0.01.

5.1. Numerical calculation of the force-velocity relation. The steady state
expression in (3.3) with the well function of (5.1) can be solved numerically using
Monte Carlo simulations we described in section 3.1. The new well shape signifi-
cantly affects how the motor responds to increases in individual activation barriers, b.

Numerical solutions for the steady state distributions with the off-register well are
shown in Figures 5.1 and 5.2. For all the values of k that we consider in our study, the
numerical solutions for the steady state distributions settle at the lowest energy state
of the potential well for both a polymerizing and depolymerizing off-register motor as
shown in Figures 5.1 and 5.2. Recall that the forces F change the well tilt and thus
affect the position of the lowest energy state in the well; thereby we see shifts on the
x-axis as the motor loads are varied. These steady state results are quite different
from what we saw for the in-register well in the previous section where high k values
affected the steady state histograms. This is due to the new well shape which does not
hinder diffusion of the kMT tip to the lowest binding energy state since the increases
in the individual barriers are not amplified significantly as the overlap increases.

Next, we numerically determine motor velocities for various motor loads at steady
state. In Figure 5.3 we have plotted the force-velocity relation for the motor with the
off-register well for different values of the parameter k. The plots are obtained using
Monte Carlo simulations as in section 3.1. We observe that there are some differences
in motor response when the well function is altered to be off-register. Namely, the
force-velocity relations do not show a slow down in velocity as we increase the value
of the parameter k. This is to be expected, since the new topology of the well changes
how the steady state histograms respond to variations in the value of k, as we saw in
Figures 5.1 and 5.2. For all the k we have tested here the steady state distribution
histograms experience shifts on the x-axis and accordingly the force-velocity curves
show flat regions corresponding to loads that cause shifts in regions where the net
balance of rates is unchanged. As a result, both a polymerizing and a depolymerizing
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Fig. 5.1. Off-register well normalized histograms of the numerical simulation results with vary-
ing activation barriers and motor loads for a depolymerizing motor with β2 = 100 s−1 > α0 = 80
s−1. Each histogram is generated by gathering simulation statistics for 1000 trials after relaxation
into steady state.

Fig. 5.2. Off-register well normalized histograms of the numerical simulation results with vary-
ing activation barriers and motor loads for a polymerizing motor with β2 = 27 s−1 < α0 = 80 s−1.
Each histogram is generated by gathering simulation statistics for 1000 trials after relaxation into
steady state.
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Fig. 5.3. Numerical load-velocity relationships for varying energy barriers for the off-register
well. (A) Force-velocity calculations for a depolymerizing motor with β2 = 100 s−1 > α0 = 80 s−1.
(B) Force-velocity calculations for a polymerizing motor with β2 = 27 s−1 < α0 = 80 s−1.

motor with an off-register well can display only a slippery or “floating grip” velocity
mode.

Finally, the change of the well function also causes the breaking loads for the
system to decrease. This is because with the given value of s we can fit only about
half the number of binders on the MT lattice when the coupler is fully engaged (note
that F ≤ 8 pN in Figure 5.3). Since the motor breaking load needs to overcome the
total energy of binding to detach a coupler, a reduction in the total number of binders
results in a decrease in the amount of load required to detach the MT polymer from
the Kt.

5.2. Asymptotic approximation. The simulations of the off-register case in-
dicate that the motor remains in the slippery regime despite changes in the unit
activation barrier values. Based on our previous calculations, we expect that in the
off-register case the drift-diffusion approximation can be a good model approximation
for a wider range of k values. Accordingly, in this section, we repeat the homogeniza-
tion argument for the off-register well in order to derive analytic expressions for the
force-velocity relation.

We repeat our steps from section 4 with the off-register well. After integrating
once with the no-flux boundaries, the steady state equation with the new well function
yields

0 = − 1

ν

(
aC1 sin

(
2πx

s

)
− bC2g(x) + bC3 cos

(
2πx

s

)
+ r(x)

)′
p(x) +Dpx(x)(5.2)

+

∞∑
n=1

δn

n!

dn−1

dxn−1

((
β(x) + (−1)nα(x)

)
p(x)

)
,

where r(x) = −h(x)− Fx.
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As before, we rescale space by setting x = Xy = νDδ
b y, and (5.2) reads

0 = −
(
aC1

kBT
sin(2πκσ)− εC2g(2πσ) + εC3 cos(2πκσ) + r̂(y)

)′
p(y) + py(y)(5.3)

+ α2

∞∑
n=1

εn−1

n!

dn−1

dyn−1

((
β̂(y) + (−1)nα̂(y)

)
p(y)

)
.

This time, we assume the existence of a solution with the expansion p(y) = p0(y, σ)+
εp1(y, σ) + O(ε2), where we now require p1(y, σ) to be a bounded function. In ac-
cordance with our previous derivation we introduce two spatial variables: a “slow”
variable z = y and a “fast” variable σ = y

ε .

The hierarchy of equations after substituting the assumed asymptotic solution
expansion into (5.3) is

O

(
1

ε

)
: −
(
2πaC1

kBT
cos(2πκσ)

)
p0(z, σ) + p0σ(z, σ) = 0,(5.4)

O(1) : −
(
2πaC1

kBT
cos(2πκσ)

)
p1(z, σ) + p1σ(z, σ)(5.5)

−
(
r̂′(z)− 2πC3 sin(2πκσ)− C2g

′(2πσ)
)
p0(z, σ) + p0z(z, σ)

+ α2

(
β̂(z)− α̂(z)

)∫ 1

0

p0(z, σ)dσ = 0.

First, we see that the solution of the O
(
1
ε

)
equation can be obtained, as before, by

direct integration, where we get

(5.6) p0(z, σ) = A0(z) exp

(
aC1 sin(2πκσ)

kBT

)
.

Note that p1(z, σ) is only required to be bounded, so after solving the O(1/ε)
equation, we have to check that the O(1) equation indeed satisfies the required bound-
edness requirement. This last step allows us to obtain an expression for the coefficient
A0(z). Let

(5.7) I(z, σ) = exp

(
−aC1 sin(2πκσ)

kBT

)
,

and the O(1) equation can now be written as

0 =
(
p1(z, σ)I(z, σ)

)
σ
+ exp(r̂(z))

(
p0(z, σ) exp(−r̂(z))I(z, σ)

)
z

+
(
C2g

′(2πσ) + 2πC3 sin(2πκσ)
)
A0(z) + α2

(
β̂(z)− α̂(z)

)
A0(z)I(z, σ)I0

(
aC1

kBT

)
,

(5.8)

where I0(
aC1

kBT ) again denotes the integral form of the modified Bessel function of the
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first kind, this time evaluated at f̂(z) = aC1

kBT . So,

p1(z, σ) =
−1

I(z, σ)

∫ ((
aC1

kBT

)
exp(r̂(z))

(
p0(z, σ) exp(−r̂(z))I(z, σ)

)
z
+
(
C2g

′(2πσ)

+ 2πC3 sin(2πκσ)
)
A0(z) + α2

(
β̂(z)− α̂(z)

)
A0(z)I0

(
aC1

kBT

)
I(z, σ)

)
dσ.

(5.9)

Since we are interested in the boundedness of p1 we examine the following limit:

lim
c→∞

∫ c

0

(
exp(r̂(z))

(
p0(z, σ) exp(−r̂(z))I(z, σ)

)
z
+
(
C2g

′(2πσ)

+ 2πC3 sin(2πκσ)
)
A0(z) + α2

(
β̂(z)− α̂(z)

)
A0(z)I0

(
aC1

kBT

)
I(z, σ)

)
dσ

= lim
c→∞c

(
A0z(z)− r̂′(z)A0(z)

)
+ α2

∫ c

0

(
β̂(z)− α̂(z)

)
A0(z)I0

(
aC1

kBT

)
I(z, σ)dσ

+K(z, σ)

= lim
N→∞

(N + ξ)
(
A0z(z)− r̂′(z)A0(z)

)
+ α2

(
β̂(z)− α̂(z)

)
A0(z)I0

(
aC1

kBT

)

×
∫ N+ξ

0

I(z, σ)dσ +K(z, σ)

= lim
N→∞

N
(
A0z(z)− r̂′(z)A0(z)

)
+ α2N

(
β̂(z)− α̂(z)

)
A0(z)I

2
0

(
aC1

kBT

)
+K(z, σ) +O(ξ),

(5.10)

where K(z, σ) = (C2g(2πσ) − C3 cos(2πκσ))A0(z) +K1(z) is a bounded term. Also
we have decomposed c = N + ξ with N = [|c|] and 0 ≤ ξ < 1.

Immediately, we see that in order to bound the p1(y, σ) solution we must take
care of the unbounded part of the above limit. We do so by setting

(5.11) −r̂′(z)A0(z) +A0z(z) + α2

(
β̂(z)− α̂(z)

)
A0(z)I

2
0

(
aC1

kBT

)
= 0,

which gives us the following condition on the coefficient A0(z):

(5.12) A0(z) = exp

(
r̂(z)− α2I

2
0

(
aC1

kBT

)∫ (
β̂(z)− α̂(z)

)
dz

)
.

Notice the striking similarity of this expression with the expression we derived for
the in-register well in (4.13). In contrast to (4.13), for the expression of (5.12) the
solution is greatly simplified due to the modified Bessel function, I0, being evaluated
at the specific value aC1

kBT . This results in a constant coefficient multiplying the jump
term expansion in the zero order solution in (5.12).

We can now write our approximation for the off-register case as
(5.13)

p0(z, σ) = exp

(
aC1 sin(2πκσ)

kBT
+ r̂(z)− α2I

2
0

( aC1

kBT

)∫ (
β̂(z)− α̂(z)

)
dz

)
+O(ε).
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Next, we calculate the approximation for motor velocities using p0 to obtain

v ≈ δ

∫ L

0

(
α(x) − β(x)

)
p0(x)dx +O(ε)

= δC

∫ L

0

(
α(x) − β(x)

)

× exp

(
aC1

kBT
sin

(
2πx

s

)
+
r(x)

kBT
− δν

kBT
I20

(
aC1

kBT

)∫ (
β(x)− α(x)

)
dx

)
dx

+O(ε).

(5.14)

We can further simplify our analytic solution for the velocity by applying averag-
ing for the velocity expression, which gives

v ≈ δ

∫ (
α(z)− β(z)

)
p0(z, σ)dz +O(ε)

= δC

∫ L

0

(
α(x) − β(x)

)
exp

(
r(x)

kBT
− δν

kBT
I20

(
aC1

kBT

)∫ (
β(x) − α(x)

)
dx

)

× I0

(
aC1

kBT

)
dx+O(ε).

(5.15)

A comparison between the expression obtained for p0 in (5.13) and the numerical
results from the previous section is shown in Figure 5.4.

Fig. 5.4. Off-register well comparison of the numerical versus the analytical steady state dis-
tributions for the diffusive approximation of the steady state probability density function for varying
loads F and k = 0.001.

Similar to the previous homogenization results from Figure 5.4, we see that the
analytical expression for the steady state solution is in good agreement with numerical
results. The main difference for p0(x) here as compared to the in-register calculation
is that the value of k does not affect the approximate steady state distributions (recall

that in (4.15), the term I20 (
f(x)
kBT ) depends on the value of the parameter k). Indeed,

the independence of p0 on k is a necessary feature due to the fact that the numerical
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Fig. 5.5. (A) Off-register well load-velocity relationship comparison between the diffusive ap-
proximation v0(x) and the Monte Carlo simulations for k = 0.001 for a depolymerizing and a
polymerizing motor of the off-register well. For the numerical simulations, bars represent standard
deviations from the mean. (B) Load-velocity relationship comparison between the diffusive approxi-
mation load-velocity relationship as given in (5.14) and the averaged velocity in (5.15).

solutions of the steady state distributions show no changes as k is varied. Further,
this also means that the analytical solutions presented here are a good match to the
numerics for all the k values we have examined in this paper (for clarity, a comparison
only for k = 0.001 is shown in Figure 5.4).

In Figure 5.5(A) we show a comparison between the numerical results for the force-
velocity relation and our analytic solution from (5.14) (only the numerical solution
for k = 0.001 is shown for clarity). The analytical velocity solution is a very good
approximation of the numerical solutions for all the values of k we have considered.
Similarly, a comparison between the averaged solution in (5.15) and the solution in
(5.14) in Figure 5.5(B) shows that the averaged solution is in good agreement with the
asymptotic solution and is thus an excellent fast approximation for the force-velocity
relation.

In summary, in this section we have calculated analytical expressions for the force-
velocity relation for the off-register motor. The solutions obtained are much simpler
than the solutions for the in-register well. A distinguishing characteristic in the off-
register well case is that the unit barrier amplitudes do not affect the analytic and
numeric solutions as opposed to the in-register case, where the value of k significantly
affects motor behavior. Therefore, the analytic solutions we obtained in this section
are not only strikingly simple but also useful for a much wider range of parameters
than in the in-register well case.

6. Conclusions. Understanding the mechanisms underlying the attachment of
chromosomes to MTs presents various challenges due to the dynamic nature of the
attached MTs. Even though many components of this attachment site have been
identified there is no clear understanding of how these components combine with one
another to create a motor that can robustly pull significant loads with velocities that
depend on the rates of the attached MT tip.

In this paper we have proposed a mathematical model for Kt motors. Within our
model framework, we can study the effect of the strength of Kt-MT binding on motor
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velocities as well as the effects of variations in the polymerization/depolymerization
rates of the attached kMT. We have also explored two cases for the model: (a) the
in-register case in which the Kt binder period is an integer multiple of the MT binding
site spacing, and (b) the off-register case in which the binder period is not an integer
multiple of binding site spacing. In the in-register scenario we saw that for weak
binding with low activation barriers the Kt model can be reduced to a simple model
where closed form expressions for the velocity-force relationship can be obtained.
We observed two modes for motor movement: (1) a slippery mode in which less
load could be sustained (however, the motor moved with velocities that obeyed the
balance of kMT rates), and (2) a sticky mode in which the motor becomes almost
static (however, the threshold for breaking loads increases). In the slippery mode,
motors act with velocities which are mostly insensitive to loads, since load variation
for this motor results in coupler repositioning on the MT lattice, which preserves
constant velocities as long as the new equilibrium position allows for the net rate of
polymerization/depolymerization to remain constant. We also showed that variations
in the kMT depolymerization rate for low unit activation in binding produce shifts in
the force-velocity relationship which, depending on the balance of rates, can lead to
a direction change for the motor due to chemical rate variations. This last feature is
particularly important for our motor in the larger chromosome movement context.

In the off-register case we saw many of the characteristics observed for the in-
register well. The main difference in this model scenario is the motor’s reaction to
variations in the unit activation barrier. Whereas the in-register case penalized the
increased overlap between the coupler and the polymer, the off-register case penalty in
free energy is much smaller. As a result, in the off-register case the motor only displays
the slippery mode with no slow down as the unit activation barrier energy increases.
This finding pointed us to the scenario that if the linkers are not highly organized,
there could be an advantage in motor velocities since slow down would require high
amounts of energy. Another advantage of the off-register well model is that analytic
solutions can be obtained and result in surprisingly simple expressions that produce
very good approximations for all the values of the unit activation barriers explored.
The analytical approach is extremely valuable for this model for both the in-register
and the off-register case since numerical simulations are time consuming. Given the
current biological data, it is unclear which linker distribution case is operating at
the Kt-MT interface. However, if the linkers are not organized into a higher order
structure that would impose the same period for the binders as the MT lattice, we
suspect that the off-register motor case would be a more appropriate Kt motor model.
In this last scenario, we predict that changes in the Kt binding strength to kMTs
caused by the phosphorylation of Ndc80 by Aurora B kinase would have to involve a
large energy exchange in order to cause a Kt motor to stall.

Furthermore, in our study we also incorporated polymerization ratchet effects that
arise from polymer pushing on the Kt plate. We saw that such effects are important
when predicting the motility of Kts especially when the motor is subject to large
pushing forces.

In conclusion, biased diffusion mechanisms coupled with spatial variations in kMT
trip rates produce force-velocity relations which are distinctively nonlinear and are
directly dependent upon Kt binding affinities to the MT lattice and the balance of
kMT growth/shortening rates. Our Kt motor model is another example of a motility
mechanism fueled by the chemical energy of polymerization coupled with the energy
of polymer lattice binding to bias thermal motion in order to generate motion.
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