
INTRODUCTION TO ANALYSIS

I talk fast because I’m from NY. But I’m happy to repeat anything as
well as to pause and answer questions. Just let me know.

Section 1: Background

Using symbols makes math easier to read.

Example: It is easier to comprehend
∫ 2
1 x

2 dx than if we wrote it out as

“the integral from 1 to 2 of x2 dx.”

Sets we will use:

• N = {1, 2, 3, . . . }, is the set of natural numbers. Notice that 0 is not
a natural number. Property of N: If n,m ∈ N then n+m ∈ N.

• Z = {. . . ,−1, 0, 1, . . . } is the set of integers. Property of Z: If
n,m ∈ Z then n + m ∈ Z and n − m ∈ Z. Also, if n 6= m, then
n−m ≥ 1.

• Q = {ab |a, b ∈ Z, b 6= 0} is the set of rationals. Property of Q: Every
q ∈ Q can be written as a repeating decimal.

• R is the set of reals. We don’t define R, but we think of it as the
points on a line, where every point can be expressed as a repeating
or non-repeating decimal.

• There is no symbol for the set of irrationals, which consists of R−Q.

Operations and relations on sets

• A ∩B = {x|x ∈ A, x ∈ B}.
• A ∪B = {x|x ∈ A, or x ∈ B}.
• ⊆ means is a subset of.

• ∈ means is an element of.

What is the difference between ⊆ and ∈? Give examples.

Words used in proofs

• st means such that. Not not use 3 to mean such that.

• WTS means want to show.

• =⇒ means implies.

• ⇐= means is implied by.

• iff means both =⇒ and ⇐=.

• ⇒⇐ means this is a contradiction.
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• � means end of proof. In lecture I’ll use //.

•
√

means end of one part of a proof.

Quantifiers

• ∀ means for every.

• ∃ means there exists.

• Not ∀ implies ∃ not . . . .

• Not ∃ implies ∀ not . . . .

What is a statement? Give me a statement containing both ∀ and ∃? Is
your statement true?

Example: ∀x ∈ R, ∃p, q ∈ Z st x = p
q .

What does this statement mean? Is it true? What’s its negation?

Recall, the following definition from Linear Algebra that will come up on
the homework and at various points in the course:

Definition. Let X and Y be sets. A function f : X → Y is a rule which
associates to each element of X an element of Y . We say that f is one-to-
one if whenever f(x1) = f(x2) then x1 = x2. We say f is onto if ∀y ∈ Y ,
∃x ∈ X st f(x) = y. We say f is a bijection if it is both one-to-one and
onto.

In analysis we want to understand R and Q. But we have to begin by
proving some things about N and Z. An important tool for proving state-
ments about natural numbers or finite sets is:

Principle of Induction: Suppose that P (n) is a statement about a natural
number n. Let n0 ∈ N. Suppose

1) Base Case P (n0) is true.
2) Inductive Step If P (n) is true for some n ∈ N, then P (n+1) is true.
Then P (n) is true ∀n ≥ n0.

To understand why this method works, let’s imagine lining up n dominoes
in a row so that if any one falls down, it pushes the next one down. If I
push the first one down, how do you know they will all fall down? This is
how induction works. In order to give an example of a proof by induction,
we begin with the following definition.

Definition. Let n ∈ Z. We say n is even if ∃k ∈ Z st n = 2k. We say n
is odd if ∃k ∈ Z st n = 2k + 1.

Example: Use induction to prove that the sum of any number of even
numbers is even.

Proof. P (n) is the statement that the sum of n even numbers is even.You need to know what
P (n) is before you can
prove it Base Case: n = 2 because we can’t take the sum of just one number, so

n = 1 doesn’t make sense. Let m1 and m2 be even numbers. Then ∃k1, k2 ∈
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Z such that m1 = 2k1 and m2 = 2k2. Now m1+m2 = 2k1+2k2 = 2(k1+k2).
Since k1 + k2 is an integer, m1 +m2 is even.

Inductive Step: Suppose that for some n the sum of n even numbers is
even.

WTS the sum of n + 1 even numbers is even. Since we are proving
something about any set of n+ 1 even numbers we have to begin by letting
m1, . . . , mn+1 be even numbers. We cannot just start with n even numbers
and then add an additional even number, because then it wouldn’t be an
arbitrary collection of n+ 1 even numbers.

WTS m1+· · ·+mn+mn+1 is even. Let q = m1+· · ·+mn. By the inductive
hypothesis (i.e., our assumption) q is even. Now m1+ · · ·+mn+1 = q+mn+1

is the sum of two even numbers. Hence by the base case, m1 + · · · + mn+1

is even.
Thus the sum of any number of even numbers is even. �

The above proof is a general method that will work on most of the prob-
lems on induction.

Theorem. Every n ∈ N is even or odd but not both.

Proof. We begin by using induction to prove that ∀n ∈ N , either ∃k ∈ Z st
n = 2k or ∃k ∈ Z st n = 2k + 1. P (n) is ∃k ∈ Z st n = 2k or ∃k ∈ Z st
n = 2k + 1.

Base Case: n = 1.
Let k = 0 then n = (2× 0) + 1. So n is odd. To prove something exists

we tell the reader how to
construct itInductive Step: Suppose that for some n ∈ N , either ∃k ∈ Z st n = 2k

or ∃k ∈ Z st n = 2k + 1.

Case 1: ∃k ∈ Z st n = 2k. Then n+ 1 = 2k + 1.

Case 2: ∃k ∈ Z st n = 2k + 1. Then n + 1 = 2k + 2 = 2(k + 1), and
k + 1 ∈ Z .

Thus ∀n ∈ N , n is either even or odd.

Now we have to prove that no n is both even and odd. We do this by
contradiction. Suppose ∃n ∈ N which is both even and odd. So ∃k1, k2 ∈ Z we use contradiction be-

cause we want to prove a
negative statementst n = 2k1 and n = 2k2 + 1. Thus 2k1 = 2k2 + 1, and hence 2(k1 − k2) = 1.

But k1−k2 ∈ Z , and hence 2 is a factor of 1. However 1 is the only positive
factor of 1. ⇒⇐. Hence n cannot be both even and odd. �

Remark: By this theorem, any natural number which is not even is odd,
and vice versa.

Contrapositive

Definition. The statement (not q) =⇒ (not p) is the contrapositive of
the statement p =⇒ q.
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Example: Consider the statement: If x > 2 then x2 > 4. Is this true?
What is the contrapositive?

If x2 ≤ 4 then x ≤ 2. Is the contrapositive true? Yes.

What is the converse?

If x2 > 4 then x > 2. Is the converse true? No

A statement and its contrapositive are equivalent. Don’t confuse the con-
trapositive with the converse.

Theorem. Let n ∈ N . If n2 is even, then n is even.

Proof. We prove the contrapositive. (what is it?) So we assume n is odd
and prove that n2 is odd. We know from part 1 of the theorem that if n
is not even then it must be odd. So ∃k ∈ Z such that n = 2k + 1. NowAre we using both parts of

the above theorem or only
one part? n2 = (2k + 1)2 = 4k2 + 4k + 1 = 2(2k2 + 2k) + 1. Hence n2 is odd. now by

part 2 of the theorem we know that n2 is not even. Thus if n2 is even, then
n is even. �

Section 2: Rationals

The following theorem shows that there exist irrationals. Until Pythagorus
(around 500 BC) people did not believe that irrationals existed, since you
cannot measure them with a ruler (why?).

Theorem.
√

2 is irrational.

Proof. We prove this by contradiction. Suppose that
√

2 is rational. Bysince it is a negative state-
ment definition of

√
x,
√

2 ≥ 0, and we know
√

2 6= 0. Thus ∃p, q,∈ N st
√

2 = p
q

and p and q have no common factors (otherwise we could cancel all common
factors). Now 2q2 = p2. So p2 is even. Now by the theorem, p is even. Thus
∃k ∈ Z st p = 2k. Now 2q2 = (2k)2 = 4k2. Thus q2 = 2k2. It follows
from the theorem that q is even. But now p and q both have 2 as a factor.
⇒⇐. �

Similarly, we can prove that other square roots are irrational. In fact,
every square root of an integer is either an integer or an irrational.

Section 3: Properties of the Reals

The arithmetic and order properties of the reals are listed in the book
and various consequences are proved. These properties are quite familiar,
so I won’t go over them. We shall assume these properties as axioms. One
other property we assume that the book has forgotten is that there is some
real number which is not equal to 0. You will need to use this assumption
on HW3. Note on HW3, you should cite the properties you are using, but
not on subsequent homeworks.
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Now we focus on the absolute value, which is familiar but we need to
develop it rigorously.

Definition.

|x| =
{
x if x ≥ 0
−x if x < 0

Since |x| is defined in two parts, we may want to use two cases in proofs
about |x|. Note that in general in

Analysis we try to avoid
doing proofs with cases.

Claim. (1) ∀x ∈ R , |x| ≥ 0.
(2) ∀x ∈ R , |x| = 0 iff x = 0.

Proof. 1) Let x ∈ R be given. If x ≥ 0, then |x| = x ≥ 0. If x < 0, then This is how we begin the
proof of any ∀ statement|x| = −x > 0.

√

2) Let x ∈ R be given. (=⇒) Suppose that |x| = 0. If x ≥ 0 then
x = |x| = 0. If x < 0 then x = −|x| = −0 = 0.

√

(⇐=) If x = 0, then |x| = x = 0. �
Now that we’ve seen the
proof of the Claim, we do
the next two proofs in the
round using cases

Lemma. ∀x ∈ R , −|x| ≤ x ≤ |x|

Proof. Let x ∈ R be given. Case 1: x ≥ 0.
|x| = x, so −|x| = −x ≤ 0 ≤ x = |x|.

√

Case 2: x < 0.
|x| = −x, so −|x| = x < 0 < −x = |x|. �

Absolute Value Lemma. Let a > 0. Then for every x ∈ R, |x| ≤ a iff
−a ≤ x ≤ a.

We will use this frequently to get rid of absolute values.

Proof. Let x ∈ R be given. We do this with cases. (=⇒) Suppose |x| ≤ a.
Proof in the round Case 1: x ≥ 0.

Then |x| = x ≥ 0. So −a ≤ 0 ≤ x = |x| ≤ a.
√

Case 2: x < 0
Then |x| = −x. So −x ≤ a. Hence −a ≤ x < 0 < a.

√

(⇐=) Suppose that −a ≤ x ≤ a.
Case 1: x ≥ 0.
|x| = x ≤ a.

√

Case 2: x < 0
|x| = −x ≤ a. �

This is the last time we need to use cases to prove something about
absolute value.
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The Triangle Inequality. ∀x, y ∈ R , |x+ y| ≤ |x|+ |y|.

Proof. Let x, y ∈ R . By the above lemma we know that:
−|x| ≤ x ≤ |x| and −|y| ≤ y ≤ |y|.

By adding these inequalities we get −(|x|+ |y|) ≤ x+ y ≤ |x|+ |y|
If we let a = |x|+|y| in the Absolute Value Lemma, we get |x+y| ≤ |x|+|y|

as required. �

Rule of Thumb: To prove anything about absolute value use either the
Absolute Value Lemma or the triangle inequality. Avoid using cases if at all
possible.

We shall assume |ab| = |a||b| which is proved in the book using cases.

Section 4: Least Upper Bound Axiom
This is the real beginning
of the course Definition. Let X ⊆ R and a ∈ R . We say a is an upper bound for X

if ∀x ∈ X, x ≤ a. We say a is a lower bound for X if ∀x ∈ X, x ≥ a. If
X has both an upper bound and a lower bound, then we say X is bounded.

Example: Let X = {2, 12 , 3,
1
3 , . . . }. Is X bounded?

Note that if a set has an upper bound, then it has infinitely many upper
bounds.

Definition. Let X ⊆ R and a ∈ R . We say a is a lub or sup if:

(1) a is an upper bound for X (i.e., ∀x ∈ X, x ≤ a).
(2) Any number smaller than a is not an upper bound for X (i.e., ∀z < a,
∃y ∈ X st y > z).

Example: Let X = (1, 5). Prove that lub(X) = 5.

Proof. 1) Let x ∈ X, then x ∈ (1, 5). So x ≤ 5.
√

2) Let z < 5 WTS ∃y ∈ X st y > z.
Case 1: z ≤ 1. Then let y = 4.

Case 2: z > 1 We will let y be the midpoint of the segment between z andWe use red to indicate our
thoughts 5. Let y = z+5

2 . Observe that z+5
2 < 5+5

2 = 5 and z+5
2 > z+z

2 = z. Thus
1 < z < y < 5, as required.

�

Note the method of taking the midpoint only works if the set X is an
interval.

Example: X = {0, 1}. WTS 1 = lub(X). Certainly 1 is an upper bound
for X. Now let z < 1, WTS X has an element bigger than z. We can’t do
this as above because if z = 1

2 , then y = z+1
2 6∈ X.
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Question: How should we define glb(X)?

So far we have only assumed the arithmetic and order properties of the
reals. These properties are “obvious”. Now we assume one more property
which is less obvious.

Least Upper Bound Axiom. Any non-empty set of reals which is bounded
above has a lub.

Note the book calls this the Completeness Axiom, because it tells us that
the reals are complete in the sense that they have no gaps.

To see why this axiom is not obvious, imagine (as the Greeks did) that
only rational numbers exist. Let X = {x ∈ Q |x2 < 2}. Then X 6= ∅ and X
is bounded above by 2. But no matter what upper bound we pick for X in
Q , we can find a smaller one. We can’t prove this yet but soon we will be
able to.

The LUB Axiom has many important consequences. We prove a few.

Archimedes Property. ∀x ∈ R , ∃n ∈ N st n > x.

Proof. We prove this by contradiction because an inequality is easy to negate. What is the negation of
the statement we want to
prove?Suppose ∃x ∈ R st ∀n ∈ N , n ≤ x. So x is an upper bound for N . Also

we know that N is non-empty, since 1 ∈ N . Hence by the LUB Axiom, N
has a lub a. Now a− 1 < a, so a− 1 is not an upper bound for N . This is
a standard trick that we often use with proofs about lub’s or glb’s. Hence
∃n ∈ N st n > a− 1. It follows that n+ 1 > a. But by the property of the
naturals we know that if n ∈ N then n + 1 ∈ N . Hence a is not an upper
bound for N . ⇒⇐.

�

Greatest Lower Bound Axiom. Every non-empty set of reals which is
bounded below has a glb.

Note we call this an axiom, but actually it follows from the LUB Axiom.
In fact, one could assume either one and prove the other. To prove this we
will use the following results from Homework 4.

2) Suppose A is a non-empty set of reals and B = {−a|a ∈ A}. If A is
bounded below, then B is bounded above.

3) Let A be a non-empty set of reals and p = lub(A), and let B = {−a|a ∈
A}. Then −p = glb(B).

Proof. Let S be a non-empty set of reals which is bounded below. WTS S
has a glb.

Let T = {−x | x ∈ S}. By HW 4 problem 2, T is bounded above since
S is bounded below. Now by the LUB Axiom, T has a lub `. Observe that
S = {−(−x) |x ∈ S} = {−t | t ∈ T}. By HW 4 Problem 3, since ` = lub(T ),
we know that −` = glb(S). So S has a glb.

�
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The following theorem is a consequence of the GLB Axiom.

Well Ordering Principle. Every non-empty set of integers which is bounded
below has a smallest element.

Question: How is this different from the GLB Axiom?

Note: We will use the fact that if n,m ∈ Z and n > m, then n−m ≥ 1.

Proof. Let S be a non-empty set of integers which is bounded below. WTS
S contains a lower bound. (How will this show what we want?) By the GLB
Axiom, S has a glb b. Since b+ 1 > b, b+ 1 is not a lower bound for S Note:
This is the same trick we saw above. Hence ∃x ∈ S st x < b+ 1.

Note rather than trying to show that b ∈ S, we will show that x (which
we know is in S) is a lower bound for S.

Claim: x is a lower bound for S.
Proof of Claim: Let s ∈ S. WTS s ≥ x. Since b is a lower bound for S,
s ≥ b. Also x < b+ 1 implies that x− 1 < b. Since x− 1 < b ≤ s, we have
x− 1 < s, and hence s− (x− 1) > 0. Now s, x ∈ S implies that s, x ∈ Z .
Thus s− (x− 1) ∈ Z . Since s− (x− 1) > 0, and the difference between any
pair of distinct integers is at least 1, it follows that s − (x − 1) ≥ 1. Now
subtract 1 from both sides of s− x+ 1 ≥ 1 to get s− x ≥ 0. Hence s ≥ x.
Therefore x is a lower bound for S.

√

Now x ∈ S and x is a lower bound for S. Thus x is the smallest element
of S. �

Density of the Rationals. Between any pair of reals there is a rational.

Proof. Let a, b ∈ R st a < b. WTS ∃m, n ∈ Z st a < m
n < b.

Idea: Pick n ∈ N st if we mark off every 1
n units on a number line, then at

least one mark is between a and b. The distance between a and b is b − a.
So we want to pick n ∈ N st 1

n < b − a. Once we pick n, we want to pick
the smallest m st m

n is bigger than a. It will follow that m
n is less than b

By Archimedes Property, ∃n ∈ N st n > 1
b−a , and hence 1

n < b − a. We

use WOP as follows to find m. Let S = {x ∈ Z | xn > a}. S 6= ∅, since by
Archimedes ∃x ∈ N st x > na. Also S is bounded below by na. Thus S
contains a smallest element m.

Now we prove that a < m
n < b. Since m ∈ S, by definition of S we know

that m
n > a. Also since m − 1 < m and m is the smallest element of S,

m − 1 6∈ S. We know that m − 1 ∈ Z . Hence m − 1 6∈ S implies that
m−1
n ≤ a. Thus m

n −
1
n ≤ a which implies m

n ≤
1
n + a. Since 1

n < b − a, it

follows that m
n ≤

1
n + a < b. So we are done. �
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Corollary. Between any pair of reals there are infinitely many rational num-
bers.

Proof. Let a, b ∈ R and a < b. We prove this by contradiction, because
infinitely many is the negative statement that there aren’t finitely many.
Suppose there are only finitely many rationals between a and b. You proved
in the homework that any finite set has a smallest element. So let c be
the smallest rational between a and b. But by the Density of the Rationals
there is a rational between a and c. ⇒⇐. Hence there are infinitely many
rationals between a and b. �

Sections 7 and 8 together

Note we skip to Chapter 2, and we do sections 7 and 8 differently than the
book does. We are about to start our study of limits of sequences. Normally
sequences are taught in Calculus II rather than Calculus I, in order to get
to derivatives more quickly. However, sequences are the most natural way
to formally develop the theory of limits of functions and continuity. So we
do them first.

Definition. A sequence is an ordered list written as {xn} = {x1, x2, . . . }.

Notes: 1) The book writes sequences as (xn) rather than {xn}. This is
confusing notation and should be avoided.

2) Unlike a set, which cannot contain more than one instance of a given
number, a sequence can contain repeated terms.

Example: {1, 1, 2} is neither a sequence nor a set. Why?

Example: {1,2,1,2,2,1,2,2,2,. . . } is a sequence, but not a set.

Definition. Let {xn} be a sequence and let N ∈ N . We say the ordered set
{x1, x2, . . . , xN} is a head of {xn} and the sequence {xN+1, xN+2, . . . } is a
tail of {xn} .

Observe that a head of a sequence is not a sequence, since it is a finite
ordered list. However, a tail of a sequence is a sequence (however, it would
have to be renumbered starting at 1). Now we introduce the definition of
convergence. Intuitively, a sequence converges to a limit ` if some tail is
arbitrarily close to a point. But we don’t use words like “arbitrarily close.”

Example: We would like to say that { 1n} converges to 0, but {1, 12 , 1,
1
3 , 1,

1
4 , . . . }

does not converge to 0. However, the latter sequence does have terms that
get arbitrarily close to 0. So we have to be careful in our definition.

Definition. A sequence {xn} is said to converge to ` if ∀ε > 0, ∃N ∈ N
st if n > N , then |xn − `| < ε. We write xn → ` or limn→∞ xn = `.
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Bad notation: Omit the brackets when taking a limit. In particular don’t
write either of the following: {xn} → ` or limn→∞{xn} = `.

The problem with this notation is that {xn} refers to the whole sequence
at once, not the individual terms. So the concept of approaching something
doesn’t make sense.

Remarks: 1) By AVL |xn − `| < ε iff xn ∈ (`− ε, `+ ε).
2) Thus we could define xn → ` if ∀ε > 0 there is a tail of {xn} which is
contained in the interval (`− ε, `+ ε).

Example: Prove that 1
n → 0.

WTS ∀ε > 0, ∃N ∈ N st if n > N then | 1n − 0| < ε. Let ε > 0 be given.

Want 1
n < ε, so make n > 1

ε . By Archimedes Property, ∃N ∈ N st N > 1
ε .

Let n > N . then | 1n − 0| = 1
n <

1
N < ε. So 1

n → 0.
√

Example: Prove that {xn} = {1, 12 , 1,
1
3 , . . . } does not converge to 0.

We want to prove that it is not that case that ∀ε > 0, ∃N ∈ N st if n > N
then |xn − 0| < ε. This means that we want to show ∃ ε > 0 st ∀ N ∈ N
∃n > N st |xn − 0| ≥ ε. So we have the power to choose an ε that will
make this statement false. We let ε = 1

2 . Now let N ∈ N. We can choose

n = 2N + 1 then n > N and xn = 1. Hence |xn− 0| = 1 > 1
2 . Thus xn 6→ 0.

Note this does not show that {xn} does not converge to something else.

Lemma. A sequence converges to at most one limit.

Proof. This is actually the negative statement: A sequence does NOT con-
verge to more than one limit. So we prove it by contradiction.

Suppose that xn → ` and xn → `′ and ` 6= `′. Thus either ` > `′ or `′ > `.
So WLOG we can assume that `′ > `. Now for any ε, (` − ε, ` + ε) and
(`′− ε, `′+ ε) each contain a tail of {xn} . If we pick ε small enough so that

these intervals are disjoint, we will get a contradiction. Let ε = `′−`
2 > 0.

Then `+ ε = `′+`
2 and `′ − ε = `′+`

2 . Hence `+ ε = `′ − ε.
Since xn → `, ∃N1 ∈ N st if n > N1 then |xn − `| < ε. Also, since

xn → `′, ∃N2 ∈ N st if n > N2 then |xn − `′| < ε. We want a single n
that makes both conditions true. Let n > max{N1, N2}. Then n > N1 and
n > N2. Hence both |xn − `| < ε and |xn − `′| < ε. Thus xn ∈ (`− ε, `+ ε)
and xn ∈ (`′ − ε, `′ + ε). Hence xn < ` + ε = `′ − ε < xn. ⇒⇐. Hence
{xn} converges to at most one limit. �

Divergence

Question: how should we define {xn} diverges?

It is hard to use the negation of the definition of convergence to prove
divergence. Give me an example of a divergent sequence. How could we
prove it diverges?



MATH 101 11

We will use the property of boundedness to prove that certain sequences
diverge. Note this doesn’t work for all divergent sequences.

Definition. A sequence {xn} is said to be bounded if ∃M > 0 st ∀n ∈ N ,
|xn| ≤M .

It follows from the homework that a set S is bounded iff ∃M > 0 st
∀x ∈ S, |x| ≤ M . So the notion of bounded for a sequence is equivalent to
the notion of bounded for a set. We use these definitions interchangeably.

Theorem. Every convergent sequence is bounded.

Proof. Let {xn} be convergent. Then ∃` ∈ R st xn → `. There are only
finitely many xn not in (`− ε, `+ ε). We can find the max of their absolute
values and the max of this interval, and take the biggest of these as our
bound. Let ε = 47. Then ∃N ∈ N st if n > N then |xn − `| < 47.
So if n > N , then |xn| = |xn − ` + `| ≤ |xn − `| + |`| < 47 + |`|. Let Note: adding and sub-

tracting the same thing is
my favorite trickM = max{47 + `, |x1|, . . . , |xN |}.

Claim: ∀n ∈ N , |xn| ≤M .

Proof of Claim: Let n ∈ N .
If n ≤ N , then |xn| ≤ max{|x1|, . . . , |xN |} ≤ max{47 + `, |x1|, . . . , |xN |} =
M .
if n > N , then |xn| < 47 + |`| ≤M .

√

Thus {xn} is bounded by M . �

Example: {0, 1, 0, 2, 0, 3, . . . } diverges because it’s unbounded.

Divergence to ±∞

Now we consider two special types of divergent sequences that have many
properties that are similar to convergent sequences.

Definition. We say that a sequence {xn} diverges to ∞ and write xn →
∞, if ∀M > 0, ∃N ∈ N st ∀n > N , xn > M .

Question: How should we define {xn} diverges to −∞?

Notes: 1) These are different than the definitions in the book because we
require M > 0 or M < 0.
2) xn →∞ iff ∀M > 0, there is a tail of {xn} contained in (M,∞). This is
very similar to xn → `.
3) If xn → `, xn →∞, or xn → −∞, then we say the limit of {xn} exists.
4) Don’t forget that not all divergent sequences diverge to ±∞.

Example: Prove that n2 − n→∞.



12 MATH 101

Proof. Let M > 0 be given. Want n(n − 1) > M . Make n − 1 > M then
n(n − 1) > 1 ×M . By Archimedes ∃N ∈ N st N > M + 1. Let n > N .
Hence n− 1 > M and n ≥ 1. Thus n(n− 1) > M . So n2 − n→∞. �

Section 9: Limit Theorems

We will prove a number of results about the arithmetic of convergent
sequences. Then for homework you will prove some similar results about
the arithmetic of sequences which diverge to ±∞.

Definition. We say a sequence {xn} is null if xn → 0.

Lemma. The sum of two null sequences is null.

Do this in the round

Proof. Let {xn} and {yn} be null sequences. WTS xn + yn → 0. Let ε > 0
be given. Want |xn + yn| < ε so we make |xn| < ε

2 and |yn| < ε
2 , and use the

triangle inequality. Since xn → 0 and yn → 0, ∃N1, N2 ∈ N st if n > N1

then |xn| < ε
2 ; and if n > N2 then |yn| < ε

2 . In order to assure that both
of these will be true, we let N = max{N1, N2}. Now let n > N . Then
|xn + yn| ≤ |xn|+ |yn| < ε

2 + ε
2 = ε. Hence xn + yn → 0. �

We use the following results

(1) xn → ` iff {xn − `} is null. proved on Homework 8
(2) If {xn} is null then ∀c ∈ R , {cxn} is null. proved on Homework 8
(3) If {xn} is null and {yn}is bounded then {xnyn} is null this is problem

8.4 on HW 10).

Addition Theorem. Suppose xn → ` and yn → k. Then xn + yn → `+ k

Proof. By result 1, {xn − `} and {yn − k} are null. Hence by our Lemma,
{(xn + yn)− (`+ k)} is null. So again by Result 1, xn + yn → `+ k. �

Multiplication Theorem. Suppose xn → ` and yn → k. Then xnyn → `k.

Proof. Again {xn − `} and {yn − k} are null. So {yn − k} is bounded
(because it converges). Thus by result 3 above, {(xn − `)(yn − k)} is null.
So {xnyn− `yn− kxn + `k} is null. WTS {xnyn− `k} is null. To do this we
will write {xnyn−`k} as the sum of null sequences. Consider the difference
between what we want and what we have:

xnyn−`k−(xnyn−`yn−kxn+`k) = −`k+`yn+kxn+`k = `(yn−k)+k(xn−`)
Thus {xnyn− `k} = {xnyn− `yn− kxn + `k}+ {`(yn− k)}+ {k(xn− `)}

We have already seen that {xnyn − `yn − kxn + `k} is null. Since yn → k
and xn → ` we know that {yn − k} and {xn − `} are null. Thus {`(yn − k)}
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and {k(xn − `)} are null as well. It follows that {xnyn − `k} is null since it
is the sum of null sequences. �

Reciprocal Theorem. Suppose zn → ` and ∀n ∈ N , zn 6= 0 and ` 6= 0.
Then 1

zn
→ 1

` .

Proof. Let ε > 0 be given. Want | 1zn −
1
` | < ε. So we want | 1zn −

1
` | =

| `−zn`zn
| = |` − zn| 1

|zn|
1
|`| < ε. We have the power to make |` − zn| as small

as we like. 1
|`| is a constant. So let’s focus on 1

|zn| first. By Homework 9,

problem 3, since ` 6= 0, ∃N1 ∈ N st if n > N1 then |zn| > |`|
2 . So if n > N1

then 1
|zn| <

2
|`| . Hence if n > N1 then 1

|zn|
1
|`| <

2
`2

.

Now we have the power to make |zn−`| be less than whatever α we want.
We know |` − zn| 1

|zn|
1
|`| < |zn − `|

2
`2

. We want this to be less than ε. Let

α = ε`2

2 > 0. Since zn → `, ∃N2 ∈ N st if n > N2, then |zn − `| < α. Let

N = max{N1, N2} and let n > N , Then | 1zn −
1
` | = |

`−zn
`zn
| = |`− zn| 1

|zn|
1
|`| <

α 2
`2

= ε`2

2
2
`2

= ε. Therefore, 1
zn
→ 1

` . �

Calculus students often say 1
∞ = 0. We can’t say this because we cannot

talk about ∞ as if it is a number. So we prove the following lemma.

Lemma. Suppose that ∀n ∈ N , sn > 0. Then sn →∞ iff 1
sn
→ 0.

Do this in the round

Proof. (=⇒) Suppose sn → ∞. WTS 1
sn
→ 0. Let ε > 0 be given. Let

M = 1
ε > 0. Since sn →∞, ∃N ∈ N st if n > N , then sn > M . Let n > N .

Then | 1sn − 0| = 1
sn
< 1

M = ε. So 1
sn
→ 0.

(⇐=) Suppose 1
sn
→ 0. Let M > 0 be given. Let ε = 1

M > 0. Since
1
sn
→ 0, ∃N ∈ N st if n > N then | 1sn − 0| < ε. Let n > N . Then

sn >
1
ε = M . Hence sn →∞. �

Section 10: Monotonic Sequences

Definition. {xn} is said to be increasing if ∀n ∈ N , xn+1 > xn.
{xn} is said to be decreasing if ∀n ∈ N , xn+1 < xn.
{xn} is said to be non-decreasing if ∀n ∈ N , xn+1 ≥ xn.
{xn} is said to be non-increasing if ∀n ∈ N , xn+1 ≤ xn.
Any of these types of sequences is said to be monotonic.

Lemma. Let {xn} be non-decreasing. Then ∀n, m ∈ N , if n > m then
xn ≥ xm.



14 MATH 101

Question: How is this different from the definition of non-decreasing?

Note, there is an analogous lemma about each type of monotonic sequence.

Proof. Let m ∈ N . We prove this by induction on n.
Base Case: n = m+ 1

It’s true by definition of non-decreasing.

Inductive Step Suppose that for some n > m, xn ≥ xm. Now by definition
of non-decreasing we know that xn+1 ≥ xn. Thus xn+1 ≥ xm, as desired.

Hence ∀n, m ∈ N , if n > m then xn ≥ xm. �

Theorem. If {xn} is monotonic and bounded, then {xn} converges.

Note, this isn’t true if {xn} is not monotonic. For example {(−1)n} is
bounded but diverges.

Proof. We prove this when {xn} is non-decreasing. The other cases are
analogous. In order to prove that {xn} converges, we need to know what
it converges to. Since {xn} is non-decreasing and bounded, we suspect it
converges to its lub. This is what we will prove. Let ` = lub{xn}. WTS
xn → `. Let ε > 0 be given. Since ` = lub{xn}, ∀n ∈ N, xn ≤ ` < `+ε. WTS
∃N ∈ N st if n > N then xn > `−ε. Observe that since `−ε < ` = lub{xn},
∃N ∈ N st xN > ` − ε. Now let n > N . Then xn ≥ xN > ` − ε and
xn ≤ ` < `+ ε. Hence |xn − `| < ε. Therefore xn → `. �

We use this result to find some new limits in the following theorem.

Theorem. Let b ∈ (0, 1). Then bn → 0.

Proof. We prove that {bn} is decreasing and bounded below by induction.
Let P (n) be the statement 0 < bn+1 < bn.

Base Case: n = 1. Since b ∈ (0, 1), 0 < b < 1. Now multiply by b to get
0 < b2 < b.

√

Inductive Step: Suppose that for some n, 0 < bn+1 < bn. We multiply
this inequality by b to get 0 < bn+2 < bn+1.

√
.

Thus {bn} is decreasing and bounded below. We know {bn} is bounded
above by 1, since b < 1 and the sequence is decreasing. Thus we know {bn}
converges. Rather than trying to prove that 0 = lub{bn}, we use sequence
arithmetic as follows. We know ∃` ∈ R st bn → `. Now by the Multiplication
Theorem we can multiply by the constant sequence {b} to get bn+1 → b`.
How do we know that b→ b?

Claim: bn+1 → `.
Let ε > 0 be given. Since bn → `, ∃N ∈ N st if n > N then |bn − `| < ε.

Let n > N . Then n+ 1 > N , hence |bn+1 − `| < ε. Thus bn+1 → `.
√
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Now by the uniqueness of limits, b` = `. Thus `(b− 1) = 0. Since b 6= 1,
we must have ` = 0. �

On the homework you will analyze the convergence or divergence of {bn}
when b 6∈ (0, 1).

We skip limsup and liminf in the book. This is a possible project topic.
You will also learn about this in Math 131.

Can we prove that a sequence converges without knowing what it con-
verges to? Yes, if it is monotonic and bounded. We will see that we can do
this in general by showing that the terms in a tail get arbitrarily close to
each other rather than showing that they get arbitrarily close to the limit.

Definition. {xn} is said to be Cauchy if ∀ε > 0, ∃N ∈ N st if n, m > N
then |xn − xm| < ε.

Example: Prove that { 1n} is Cauchy.

Let ε > 0 be given. ∃N ∈ N st N > 1
ε . Let n, m > N . WLOG n ≥ m.

Then 1
n ≤

1
m . Thus | 1n −

1
m | =

1
m −

1
n ≤

1
m < 1

N < ε. Hence { 1n} is Cauchy.√
.

Theorem. If {xn} converges then {xn} is Cauchy.

Proof. Suppose xn → `. Let ε > 0 be given. Want |xn − xm| < ε. Let’s use
my favorite trick |xn − xm| ≤ |xn − `| + |` − xm|. Now we can make each
term less than ε

2 . Since xn → `, ∃N ∈ N st if n > N then |xn − `| < ε
2 . Let

n, m > N , then |xn − xm| ≤ |xn − `|+ |`− xm| < ε
2 + ε

2 = ε. Hence {xn} is
Cauchy. �

Later we will prove that every Cauchy sequence converges using a different
approach from the book. You cannot use this result until we prove it in class.
In the meantime, we prove that Cauchy sequences have many of the same
properties as convergent sequences.

Theorem. Let {xn} be Cauchy. Then {xn} is bounded.
This is similar to the
proof that convergent
sequences are bounded.
How did that proof go?

Proof. Let ε = 47. Since {xn} is Cauchy, ∃N ∈ N st if n, m > N then
|xn − xm| < 47. We will let xN+1 play the role that ` played in the proof
that convergent sequences are bounded. Since N + 1 > N , if n > N then
|xn| = |xn − xN+1 + xN+1| ≤ |xn − xN+1| + |xN+1| < 47 + |xN+1|. Let
M = max{47 + |xN+1, |x1|, . . . , |xN |}.
Claim: ∀n ∈ N , |xn| ≤M .
Proof of Claim: Let n ∈ N . If n > N then |xn| < 47 + |xN+1| ≤ M . If
n ≤ N , then |xn| ∈ {47 + |xN+1, |x1|, . . . , |xN |} and hence |xn| ≤M .

√
�
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Section 11: Subsequences

(a difficult topic)

Idea: Given a sequence, a subsequence is an infinite sublist in the same
order as the sequence.

Example: {1, 2, 3, . . . } is a sequence.
{2, 4, 6, 8, . . . } is a subsequence.
{2, 1, 4, 3, 6, 5 . . . } is not a subsequence.

Notes:
1. To get a subsequence we cross out a finite or infinite number of terms so
that the list we get is still infinite.
2. Every sequence has infinitely many subsequences.

The following definition formalizes what we mean by the order of the
subsequence is the same as the order of the sequence.

Definition. Let {xn} be a sequence of reals and let {nk} be an increasing
sequence of naturals. We write {xnk

} = {xn1 , xn2 , . . . } and we say {xnk
} is

a subsequence of {xn} .

Example: Let {xn} = {1, 3, 5, 7 . . . } and let nk = 2k.

Question: What is {xnk
} ?

The “place” of a term in a sequence is where it occurs. For the above
example, what is the place of 7 in {xn} ? What is the place of 7 in {xnk

} ?
The “value” of a term is what that term equals. In the above example, what
is the value of x3? What is the value of xn3? As you see, it is easy to get
confused. Note the variable of the subsequence must be k rather than n.

Example: {xn} = (−1)n
n and nk = k2. What is {xnk

} ?

In general, consider a sequence {xn} with a subsequence {xnk
}. Suppose

that for some k, the value of xnk
is a. Then the place of a in the subsequence

is k and the place of a in the sequence is nk. The following Lemma tells us
that a particular term in a subsequence occurs at the same place or earlier
than in the sequence. This is not surprising since we got the subsequence by
crossing out some of the terms of the sequence causing the remaining terms
to be moved forward.

Lemma. Let {nk} be an increasing sequence of naturals. Then ∀k ∈ N ,For us {nk} will be the
subscripts of the subse-
quence. nk ≥ k.

Proof. We prove this by induction on k.

Base Case: k = 1.
nk ≥ 1 since nk ∈ N .
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Inductive Step: Suppose that nk ≥ k for some k. Now nk+1 > nk ≥ k.
But nk+1 and k ∈ N . Hence nk+1 > k implies nk+1 ≥ k + 1.

Thus for all k ∈ N , nk ≥ k. �

Definition. Let {xn} be a sequence with a subsequence {xnk
} . We say

{xnk
} converges to ` and write xnk

→ ` if ∀ε > 0, ∃N ∈ N st if k > N , then
|xnk

− `| < ε.

Question: How do we define {xnk
} is Cauchy?

Theorem. A sequence {xn}converges to ` iff every subsequence of {xn}converges
to `.

Proof. (=⇒) Suppose xn → `. Let {xnk
} be a subsequence. WTS xnk

→ `.
let ε > 0 be given. Since xn → `, ∃N ∈ N st if n > N then |xn − `| < ε.
Let k > N . By the Lemma nk ≥ k > N . So |xnk

− `| < ε. Thus xnk
→ `.

(⇐=) Suppose every subsequence of {xn} converges to `. Consider the
subsequence given by nk = k. Then xk → `. But {xn} = {xk} =
{x1, x2, x3, . . . }. Hence xn → ` �

Example: We can use this theorem to show that a sequence diverges.
Consider {(−1)n}. The subsequence {(−1)2n} converges to 1, and the sub-
sequence {(−1)2n+1} converges to −1. Hence by this theorem the sequence
{(−1)n} diverges.

An important example: We create a sequence containing all of the pos-
itive rational numbers as follows. First we create an infinite array listing
every positive rational infinitely many times.

1 2 3 4 . . .
1
2

2
2

3
2

4
2 . . .

1
3

2
3

3
3

4
3 . . .

1
4

2
4

3
4

4
4 . . .

1
5

2
5

3
5

4
5 . . .

. . . . . . .

Let {xn} be the sequence obtained by listing the rationals in the order
given by the path (drawn on the board) through the array which we have
illustrated. First we list all rationals whose numerator and denominator
add up to 1, then all those that add up to 2, then 3 and so on. We can see
that every positive rational occurs in this sequence. In fact, every positive
rational occurs infinitely many times in this sequence.

Lemma. For every a ≥ 0, the above sequence contains a subsequence which
converges to a.



18 MATH 101

Proof. Let a ≥ 0 be given. We shall construct a subsequence inductively
(this means that we show how to define the first term and then how to define
each subsequent term in terms of the term before it). By the Density of the
Rationals, there is a positive rational between a and a+ 1. Such a rational
is contained in the sequence {xn} . So let xn1 be a term of {xn} between a
and a+ 1.

Before we choose the next term of our subsequence, let’s consider an
example. Suppose that a = 1

2 . Now we first choose xn1 ∈ (12 ,
3
2). Let’s say

we choose xn1 = 3
4 . Since the term 3

4 occurs infinitely many times in the
sequence, there are many choices for n1. Suppose we choose n1 = 18. Now
we want to choose n2 > n1 = 18 such that xn2 ∈ (12 , 1). There are only 18
terms of {xn} whose subscripts are less than or equal to 18. But there are
infinitely many rationals in (12 , 1). Thus we can find some n2 > n1 = 18

such that xn2 ∈ (12 , 1). We could even choose another term of {xn} which

is also equal to 3
4 but is farther out in the sequence. For example, we could

choose 6
8 . But we don’t need to decide what n2 should be, we just need to

know that there is such an n2 that fits our requirements. Now we return to
our proof to show that we can define an n2 in a more general way.

Now there are infinitely many rationals between a and a + 1
2 and only

finitely many xn with n ≤ n1. So there exists an n2 > n1 st a < xn2 < a+ 1
2 .

Continue this process.
In general, suppose we have defined xn1 , . . . , xnk

in this way. There are
infinitely many rationals between a and a+ 1

k+1 , but only finitely many xn
with n ≤ nk. So there exists nk+1 > nk such that a < xnk+1

< a+ 1
k+1 ,

By construction, {nk} is an increasing sequence of naturals, so {xnk
} is a

subsequence of {xn} . Also, ∀k ∈ N , a < xnk
< a+ 1

k . Now by the squeeze
theorem (which was exercise 8.5) xnk

→ a. �

Definition. If {xn} has a subsequence which converges to a, then we say a
is a subsequential limit of {xn} .

The following definition is related to subsequential limits, though that’s
not obvious.

Definition. Let {xn}be a sequence and let a ∈ R . We say that a is a limit
point of {xn} if ∀ε > 0 and ∀N ∈ N , ∃n > N st |xn − a| < ε.

Question: What is the difference between saying that {xn} converges to a
and saying that a is a limit point of {xn} ?

If a is a limit point of {xn} , then every interval around a contains at least
one term of every tail, but not necessarily the entire tail.

Example: {xn} = {1, 1, 13 , 2,
1
5 , 3, . . . }.

Claim: 0 is a limit point of {xn} , but this sequence diverges.
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Proof. Let ε > 0 and N ∈ N be given. Let n > max{N, 1ε} such that n ∈ N .

Now 2n+ 1 > n > N and x2n+1 = 1
2n+1 < ε. Therefore |x2n+1 − 0| < ε. So

0 is a limit point .
√

However, {xn} contains the subsequence {x2k} = {1, 2, 3, . . . } which di-
verges to ∞. Thus {xn} diverges by the theorem that a sequence converges
to a if and only if every subsequence converges to a. �

Theorem. a is a limit point of {xn} iff a is a subsequential limit of {xn} .

This is an important theorem because it allows us to go back and forth
between the definition of a limit point and the definition of the limit of a
subsequence, and use whichever definition works in a given problem.

Proof. (=⇒) Suppose that a is a limit point of {xn} . Then ∀ε > 0 and
∀N ∈ N , ∃n > N st |xn − a| < ε. We want to construct a subsequence
which converges to a. We do this inductively to make sure that the se-
quence of subscripts {nk} is increasing. This is what we do whenever we’re
constructing a subsequence

Let ε1 = 1 and N1 = 1. Then ∃n1 > 1 st |xn1 − a| < 1.
Let ε2 = 1

2 and N2 = n1. Then ∃n2 > n1 st |xn2 − a| < 1
2 .

Continue this process. In general, assume we have defined xnk
as above. Let

εk+1 = 1
k+1 and Nk+1 = nk. Then ∃nk+1 > nk st |xnk+1

− a| < 1
k+1 . By

construction, {nk} is increasing. Hence {xnk
} is a subsequence of {xn} .

Now ∀k ∈ N , |xnk
− a| < 1

k . Thus ∀k ∈ N , a− 1
k < xnk

< a+ 1
k . Hence

by the squeeze theorem xnk
→ a.

√

(⇐=) Now suppose that {xnk
} is a subsequence of {xn} st xnk

→ a. WTS
a is a limit point of {xn} . Let ε > 0 and N1 ∈ N be given. Since xnk

→ a,
∃N2 ∈ N st if k > N2, then |xnk

− a| < ε. Let k > max{N1, N2}. Then
nk ≥ k > N1 (which is required) and since k > N2, |xnk

− a| < ε. Thus a is
a limit point of {xn} . �

Definition. Let {xn}be a sequence and N ∈ N . We say xN is a dominant
term of {xn} if ∀n > N , xn ≤ xN . In other words, the terms of a tail cut
off at the Nth term of the sequence are all less than or equal to xN .

We see the relationship between dominant terms and monotonic subse-
quences in the following examples.

Examples:

(1) {n} has no dominant terms. Has an increasing but no decreasing
subsequence.

(2) {−n} every term is dominant. Has a decreasing but no increasing
subsequence.
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(3) {1, 0, 12 , 0,
1
3 , 0, . . . } every term whose place is odd is dominant. Has

a decreasing subsequence but no increasing subsequence.
(4) {0,−1,−1

2 ,−
1
3 ,−

1
4 , . . . } the first term is the only dominant term. It

has an increasing but no decreasing subsequence.
(5) {1, 1, 1, 1, . . . } every term is dominant and it has both a non-decreasing

and a non-increasing subsequence.

Question: Can you guess what the relationship between dominant terms
and monotonic subsequences is?

Monotonic Subsequence Theorem (MST). Every sequence has a mono-
tonic subsequence.This is important

Proof. Let {xn} be a sequence. We will consider two cases according to
whether or not {xn} has infinitely many dominant terms.

Case 1: {xn} has infinitely many dominant terms.
In this case, we will form a non-increasing subsequence from the dominant

terms. In particular, let xn1 be the first dominant term. Let xn2 be the
second dominant term. We can continue this indefinitely because {xn} has
infinitely many dominant terms. By construction, {nk} is increasing. Thus
{xnk

} is a subsequence of {xn} . Since all terms of {xnk
} are dominant,

∀k ∈ N , since nk+1 > nk, we have xnk+1
≤ xnk

. Thus {xnk
} is a non-

increasing subsequence.

Case 2: {xn} has zero or finitely many dominant terms.
In this case, there is an N ∈ N st ∀n > N , the term xn is not dominant.

Now let n1 = N + 1. Thus xn1 is not dominant. Hence ∃n2 > n1 st
xn2 > xn1 . Now xn2 is not dominant. So ∃n3 > n2 st xn3 > xn2 . Since none
of the terms after the N th term are dominant, we can continue this process
indefinitely to get a subsequence which is increasing.

In either case we have a monotonic subsequence. So we are done. �

As a corollary we obtain the following really, really, REALLY important
result.

Bolzano-Weierstrass Theorem (BW). Every bounded sequence has a
convergent subsequence.

Proof. Let {xn} be bounded. By MST {xn} has a monotonic subsequence
{xnk

} . Now {xnk
} is bounded and monotonic, so it converges. �

Using the equivalence of subsequential limits and limit points, we can
restate BW as follows.

Bolzano-Weierstrass Theorem (BW). Every bounded sequence has a
limit point.
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BW is a very powerful theorem that we will use frequently, and you will
hear more about in Math 131. It is generally easier to use BW than MST.
You should think about whether BW might help you whenever you are a
stuck on a problem. We will use BW to prove that every Cauchy sequence
converges, but we need to first prove one final lemma.

Lemma. Let {xn} be Cauchy. If {xn} has a convergent subsequence then
{xn} converges.

Proof. Suppose {xnk
} is a subsequence which converges to some a. WTS

xn → a. Let ε > 0 be given.
We want |xn− a| < ε. We can make |xn− xnk

| < ε
2 since {xn} is Cauchy,

and we can make |xnk
− a| < ε

2 since xnk
→ a. Then we can add these

together.
Since xnk

→ a, ∃N1 ∈ N st if k > N1 then |xnk
− a| < ε

2 . Since
{xn} is Cauchy, ∃N2 ∈ N , st if n, m > N2, then |xn − xm| < ε

2 . Now
we let N = max{N1, N2}, and let n, k > N . Then nk ≥ k > N . Hence
|xnk
−a| < ε

2 and |xn−xnk
| < ε

2 . Thus |xn−a| ≤ |xn−xnk
|+ |xnk

−a| < ε.
Hence xn → a. �

Theorem. Every Cauchy sequence converges.

Proof. Let {xn}be Cauchy. Then {xn} is bounded. Hence by BW, {xn}has
a convergent subsequence. Thus by the above lemma, {xn} converges. �

Section 17: Continuity (note we skip 12-16)

We begin by defining continuity in terms of convergent sequences. Then
we show that our definition of continuity is equivalent to the usual definition
that you may have seen in Calculus.

Definition. Let A ⊆ R and f : A → R , and c ∈ A. We say that f
is continuous at c if ∀{xn} ⊆ A st xn → c, then f(xn) → f(c). If f is
continuous at every point of A, then we say that f is continuous.

Consider the following intuitive examples.

Example: A function with a gap at x = a, is discontinuous at a.
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a

f(a)

n

f(x  )

x

n

Example: f(x) = 1
x , is continuous since it is not defined at 0. In particular,

let a ∈ R − {0} and let {xn} ⊆ R − {0} such that xn → a. Then by the
Reciprocal Theorem 1

xn
→ 1

a

Example: A function with a gap at a where a is not in the domain, is
continuous.

a

Example: f : N → N defined by f(n) = n, is continuous.
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Example: f(x) =

{
1 if x ∈ Q
2 if x 6∈ Q

f is discontinuous at every point because for every a ∈ R, there is a
sequence {xn} ⊆ Q such that xn → a and there is a sequence {yn} ⊆ R−Q
such that xn → a.

Theorem. Let f : A → R and let c ∈ A. Then f is continous at c if and
only if ∀ε > 0, ∃δ > 0, st if x ∈ A and |x− c| < δ then |f(x)− f(c)| < ε.

This theorem tells us that our definition of continuity is equivalent to the
usual ε− δ definition from Calculus.

a

f(a)
ε

ε

δ δ

Proof. (=⇒) Suppose that f is continuous at c. Let ε > 0 be given. Rather
than constructing δ as we would usually do to prove existence, we will do it
by contradiction.
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Suppose 6 ∃δ > 0 st if x ∈ A and |x− c| < δ then |f(x)− f(c)| < ε. Hence
∀δ > 0 ∃x ∈ A st |x− c| < δ but |f(x)− f(c)| ≥ ε.

We use this to construct a sequence which will contradict the definition
of continuity. We do not need to construct the sequnce inductively.

So ∀n ∈ N , ∃xn ∈ A st |xn−c| < 1
n but |f(xn)−f(c)| ≥ ε. Now {xn} ⊆ A

and ∀n ∈ N , |xn − c| < 1
n . Hence by the Squeeze Theorem xn → c. Now by

the definition of continuity, f(xn)→ f(c). But ∀n ∈ N , |f(xn)− f(c)| ≥ ε.
⇒⇐. Thus ∃δ > 0 st if |x− c| < δ then |f(x)− f(c)| < ε.

(⇐=) Suppose ∀ε > 0, ∃δ > 0, st if |x − c| < δ then |f(x) − f(c)| < ε.
WTS f is continuous at c. Let xn → c. WTS f(xn) → f(c). Let ε > 0 be
given. By our hypothesis ∃δ > 0, st if |x − c| < δ then |f(x) − f(c)| < ε.
Now since xn → c, ∃N ∈ N st if n > N then |xn − c| < δ . Let n > N .Note we use δ rather

than ε since the sequence
{xn} is on the x-axis Then |xn − c| < δ. Hence by our choice of δ, |f(xn) − f(c)| < ε. Thus

f(xn)→ f(c). Hence f is indeed continuous at c. �

Thus we can use the sequence definition and the ε − δ definition inter-
changeably. We usually use the ε − δ defintion to prove continuity and we
use the sequence definition to prove discontinuity. Keep this in mind as you
work with some specific functions.

However, we will use the sequence definition to prove results about arith-
metic of continuous functions, because we can build on the results we have
about arithmetic of sequences.

Definition. Let f, g : A → R . Define f + g and fg as (f + g)(x) =
f(x) + g(x) and fg(x) = f(x)g(x).

Arithmetic Theorem. Suppose f and g are continuous on A ⊆ R . Then
f + g and fg are also continuous on A.

Go around the room to
prove this and the next re-
sult Proof. Let c ∈ A and {xn} ⊆ A st xn → c. Then since f and g are

continuous, f(xn)→ f(c) and g(xn)→ g(c). So by Arithmetic of sequences
f(xn) + g(xn) → f(c) + g(c) and f(xn)g(xn) → f(c)g(c). Thus f + g and
fg are continuous at c. Since c was arbitrary, f + g and fg are continuous
on A. �

Composition Theorem. Let f : A→ R and g : f(A)→ R be continuous.
Then g ◦ f : A→ R is continuous.

Proof. Let c ∈ A and {xn} ⊆ A st xn → c. Since f is continuous at c,
f(xn)→ f(c). Now {f(xn)} ⊆ f(A) and f(c) ∈ f(A). Since g is continuous
on f(A), g(f(xn)) → g(f(c)). Therefore, (g ◦ f)(xn) → (g ◦ f)(c). So g ◦ f
is continuous at c and hence on all of A. �

Example: f(x) = a and f(x) = x are continuous. Go around the room,
proving the first with sequences and the second with ε− δ
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By applying the above results we get lots of continuous functions.
For the homework you need:

Definition. A function f : A→ R is increasing if ∀x, y ∈ A with x ≤ y,
then f(x) ≤ f(y). A function f : A → R is decreasing if ∀x, y ∈ A with
x ≤ y, then f(x) ≥ f(y). If f is either increasing or decreasing, then we
say f is monotonic.

Section 18: Properties of Continuous Functions

Definition. f : A → R is said to be bounded if ∃M > 0 st ∀x ∈ A,
|f(x)| ≤M . (i.e., f(A) is bounded as a set)

Theorem. Let f : [a, b]→ R be continuous. Then f is bounded.

Example: f(x) = 1
x isn’t bounded on [−1, 1] or on [0, 1] because it is not

defined at 0.

Proof. The proof will be similar to the proof that continuity implies the ε−δ
definition on continuity, but will also use BW.

Suppose that f is not bounded. Then ∀M > 0, ∃x ∈ [a, b] st |f(x)| > M .
Hence ∀n ∈ N , ∃xn ∈ [a, b] st |f(xn)| > n. Now {xn} ⊆ [a, b]. Hence we can
apply BW. Thus {xn}contains a subsequence {xnk

}which converges to some
`. Now {xnk

} ⊆ [a, b] and xnk
→ `. Thus by HW problem 8.9, ` ∈ [a, b]. It

follows that f is continuous at `. So xnk
→ ` implies that f(xnk

) → f(`).
But ∀k ∈ N , |f(xnk

)| > nk ≥ k. So |f(xnk
)| → ∞. But f(xnk

) → f(`)
implies |f(xnk

)| → |f(`)|. ⇒⇐. Thus f is bounded. �

Max-Min Theorem. Let f : [a, b]→ R be continuous. Then ∃p, q ∈ [a, b]
st ∀x ∈ [a, b], f(p) ≤ f(x) ≤ f(q). ( i.e., f(p) is the min and f(q) is the
max.)

Question: How do we solve Max-Min problems in Calculus?
Answer: We know that a local max or min can occur only at a critical
point of the function or at an endpoint of the domain. So we just have to
compare values of f at the critical points and at a and b. The Max-Min
Theorem gives us the right to do this.

If the domain of f is not a closed bounded interval, the function may not
have an absolute max or min. In this case, we could compare values of f
at critical points or an endpoint of the domain, but this will not necessarily
give us a max or a min.

Example: consider a function on (a, b) which approaches ∞ as x→ b and
approaches −∞ as x→ a.
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a b

Example: We can also consider f : [−1, 0)∪(0, 1] given by f(x) = 1
x , which

has neither a min nor a max on its domain.

-1

1

Proof. The proof will be similar to our last proof. By the previous theorem,
f is bounded on [a, b]. So the set {f(x)|x ∈ [a, b]} is bounded. Let M =
lub{f(x)|x ∈ [a, b]}. We will show that ∃q ∈ [a, b] st f(q) = M . The proof
that f has a min is similar. Since ∀n ∈ N , M − 1

n < M , we know ∀n ∈ N ,

∃xn ∈ [a, b] st f(xn) > M − 1
n . Now ∀n ∈ N , M − 1

n < f(xn) ≤ M . So by
the Squeeze Theorem f(xn)→M .

Now {xn} ⊆ [a, b], so by BW, ∃ a convergent subsequence {xnk
} . Let

q ∈ R st xnk
→ q. Then by problem 8.9, q ∈ [a, b]. Furthermore, since f is

continuous on [a, b], f(xnk
)→ f(q). Hence f(q) = M . �

Another familiar result from calculus is:

Intermediate Value Theorem (IVT). Let f : [a, b]→ R be continuous.
Suppose that y is between f(a) and f(b). Then ∃c ∈ (a, b) st f(c) = y.

Question: How does IVT come up in every day life?

Proof. WLOG f(a) < f(b). So we have f(a) < y < f(b). Consider the set
S = {x ∈ [a, b]|f(x) ≤ y}. Then S ⊆ [a, b] is bounded. Also a ∈ S and
b 6∈ S. Now S is bounded above by b, and S has a lub c. Thus c ≤ b. Also,
a ∈ S, so a ≤ c. Thus c ∈ [a, b].
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a b

y

S
c

WTS f(c) = y. We will show that f(c) ≤ y and f(c) ≥ y. The proofs in
both directions are again similar to the last one.

Claim: f(c) ≤ y

Proof of Claim: Since c = lub(S), ∀n ∈ N , there is xn ∈ S st
c − 1

n < xn ≤ c ≤ b. Now by the Squeeze Theorem, xn → c. Also,
{xn} ⊆ [a, b], and c ∈ [a, b]. Since f is continuous on [a, b], f(xn) → f(c).
Now ∀n ∈ N , xn ∈ S, so f(xn) ≤ y. Now by exercise 8.9, f(c) ≤ y.

√

Claim: f(c) ≥ y.

Proof of Claim: We know by the above claim that f(c) ≤ y < f(b). Thus
c 6= b. Since c ∈ [a, b], it follows that c < b. Now c = glb(c, b]. Hence
∀n ∈ N , c + 1

n is not a lower bound for (c, b]. So ∀n ∈ N , ∃zn ∈ (c, b] st

zn < c + 1
n . Note we can’t just let zn = c + 1

n since c + 1
n might not be in

[a, b]. Now ∀n ∈ N , c < zn < c + 1
n . So by the Squeeze Theorem, zn → c.

Also {zn} ⊆ [a, b], and c ∈ [a, b]. Since f is continuous at c, it follows that
f(zn) → f(c). Now ∀n ∈ N , zn 6∈ S since zn > c = lub(S), but zn ∈ [a, b].
Thus ∀n ∈ N , f(zn) > y. Now by 8.9, f(c) ≥ y.

√
.

Putting these claims together, we have found c ∈ [a, b] st f(c) = y. �

Combining the Max-Min Theorem and the Intermediate Value Theorem,
we can now prove the following.

Corollary. Let f : [a, b]→ R be continuous. Then ∃m, M ∈ R st f([a, b]) =
[m,M ]. (i.e., Continuous functions take closed bounded intervals to closed
bounded intervals.)

Example: f : R → R given by f(x) = x2. Then f([−1, 1]) =?

Proof. By the Max-Min Theorem, ∃p, q ∈ [a, b] st ∀x ∈ [a, b], f(p) ≤ f(x) ≤
f(q). Let m = f(p) and M = f(q). Then f([a, b]) ⊆ [m,M ]. Now let
y ∈ [m,M ]. By the IVT, ∃c ∈ (a, b) st f(c) = y. So [m,M ] ⊆ f([a, b]).
Thus f([a, b]) = [m,M ]. �
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Section 19: Uniform Continuity

When we use the ε − δ definition of continuity at a point c, we see that
for a given value of ε, the choice of δ generally depends on the point c.

Example: Consider f(x) = 1
x on (0,∞).

c d

f(c)

f(d)

(
(

(

(

( (( (

For the same ε, if c is on the steeper part of f(x) then δ must be smaller.
We see intuitively that δ gets arbitrarily small as c gets closer to 0.

Question: Is there a function such that for a given ε there is a δ that works
for all points in the domain?

Yes, f(x) = mx+ b has this property because the slope is constant. But
this is not a necessary condition.

Definition. Let f : A→ R. We say f is uniformly continuous if ∀ε > 0,
∃δ > 0 st if x, y ∈ A and |x− y| < δ then |f(x)− f(y)| < ε.

Observe that the roles of x and y are exactly the same. There is no fixed
point c as in the usual definition of continuity. Observe that if f is uniformly
continuous, then f is continuous at every point in its domain.

Theorem. Let f : A → R be uniformly continuous and let {xn} ⊆ A be
Cauchy. Then {f(xn)} is Cauchy.

Note we work with Cauchy rather than convergence because the sequence
{xn}might converge to a point which is not in the domain.
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a bxn

f(    )xn

If a sequence {xn} converges to a point a in the domain of a continuous
function f , then by definition of continuity f(xn) → f(a). We don’t need
uniform continuity to conclude this. On the other hand, in a Homework
problem you will give an example of a sequence which is Cauchy but its
image under a continuous function is not Cauchy. So the hypothesis of
uniform continuity is very important when we are thinking about Cauchy
sequences.

Proof. Let ε > 0 be given. Since f is uniformly continuous, ∃δ > 0 st
if x, y ∈ A and |x − y| < δ then |f(x) − f(y)| < ε. Now since {xn} is
Cauchy, ∃N ∈ N st if n, m > N then |xn − xm| < δ. Let n, m > N , then
|xn − xm| < δ, which implies by our choice of δ that |f(xn) − f(xm)| < ε.
Thus {f(xn)} is Cauchy. �

Theorem. Let f : [a, b]→ R be continuous. Then f is uniformly continu-
ous.

We can use this Theorem to find examples of uniformly continuous func-
tions with unbounded slope.

Example: Consider a function on [a, b] with a cusp point.

ba

Proof. Let ε > 0 be given. WTS that ∃δ > 0 st if x, y ∈ [a, b] and |x−y| < δ
then |f(x) − f(y)| < ε. We prove this by contradiction. Suppose ∀δ > 0,
∃x, y ∈ [a, b] st |x − y| < δ but |f(x) − f(y)| ≥ ε. We use δ = 1

n to non-
inductively create two different sequences. So ∀n ∈ N , ∃xn, yn ∈ [a, b] st
|xn − yn| < 1

n but |f(xn)− f(yn)| ≥ ε. Now {yn} ⊆ [a, b], so by BW it has
a convergent subsequence {ynk

}. Now ynk
→ c for some c ∈ [a, b].

Claim: xnk
→ c.
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Proof of Claim: Observe that ∀k ∈ N , |xnk
− ynk

| < 1
nk
≤ 1

k . So ∀k ∈ N ,

ynk
− 1

k < xnk
< ynk

+ 1
k . Now both ynk

− 1
k → c and ynk

+ 1
k → c. So by

the Squeeze Theorem, xnk
→ c.

√

Now both xnk
→ c and ynk

→ c and c ∈ [a, b]. Since f is continuous
at c, this means both f(xnk

) → f(c) and f(ynk
) → f(c). Thus ∃N1 ∈ N

st if k > N1 then |f(xnk
) − f(c)| < ε

2 and ∃N2 ∈ N st if k > N2 then
|f(ynk

) − f(c)| < ε
2 . Let k > max{N1, N2}. Then |f(xnk

) − f(ynk
)| ≤

|f(xnk
)− c|+ |f(ynk

)− c| < ε. But ∀n ∈ N , |f(xn)− f(yn)| ≥ ε. ⇒⇐
Hence ∃δ > 0 st if x, y ∈ [a, b] and |x − y| < δ then |f(x) − f(y)| < ε.

Thus f is uniformly continuous. �

Section 20: Limits of functions and Accumulation points

Before we can talk about limits of functions we define the points where
we can take limits. The idea is that if a point is isolated in the domain (like
for the integers) then we can’t approach that point. So we can’t define the
limit of the function as x approaches that point.

Example: Consider f : N → R by f(x) = x. Then we cannot define
limx→a f(x) for any a ∈ N .

Definition. Let A ⊆ R and a ∈ R . We say a is an accumulation point
of A if ∀ε > 0, ∃x ∈ A st 0 < |x− a| < ε.

The intuition is that A is “accumulating” near a means that every interval
around a contains a point of A other than a. This is similar to a being a
limit point of a sequence if we think of a limit point as a point with the
property that ∀ε > 0 there is a point of the sequence within ε of a. But for
sequences the element of the sequence in (a− ε, a+ ε) could actually equal
a, even repeatedly so. For example, the sequence {1, 2, 1, 2, . . . } has 1 as a
limit point. But a point can only occur once in a set and being in the set
does not make it an accumulation point of the set.

Example: What are the accumulation points of the following sets:

(1) {1, 2}
(2) (0, 1)
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(3) Q

(4) { 1n}

(5)
⋃∞

n=1(
1

n+1 ,
1
n)

We use accumulation points to define the limit of a function.

Definition. Let A ⊆ R and let a be an accumulation point of A. Let
f : A → R , and let ` ∈ R or ` = ±∞ We write limx→a f(x) = ` if
∀{xn} ⊆ A− {a} st xn → a then f(xn)→ `.

Question: Why do we require {xn} ⊆ A− {a} instead of just {xn} ⊆ A?

a

p

Suppose f is not continuous at a, but for every {xn} ⊆ A−{a} st xn → a
then f(xn)→ `. Now let {yn} ⊆ A st {yn} has a tail of a’s. Then yn → a but
f(yn) → f(a) 6= `. If we consider sequences like {yn}, then we would have
to say limx→a f(x) does not exist since f(xn) → ` and f(yn) → f(a) 6= `.
This is a problem if a sequence has infinitely many a’s even if it doesn’t have
a tail of a’s.

Question: Why do we require that a is an accumulation point?

Let f : Z → R by f(x) = x. Let a ∈ Z . Then there is no sequence
{xn} ⊆ Z − {a} st xn → a. So the definition would vacuously imply that
for every ` ∈ R , limx→a f(x) = `.

So don’t forget either requirement.

Theorem. Let f : A→ R and a ∈ A an accumulation point of A. Then f
is continuous at a iff limx→a f(x) = f(a).

This is the definition of continuity that is given in Calculus.

Proof. (⇒) Suppose f is continuous at a. Let {xn} ⊆ A − {a} such that
xn → a. Then by definition of continuity, f(xn)→ f(a). So limx→a f(x) =
f(a).

(⇐) Suppose that limx→a f(x) = f(a). Now let {xn} ⊆ A such that xn → a.
Note that {xn} may contain a. WTS f(xn)→ f(a).

Case 1: {xn} has at most finitely many n, st xn = a.
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Then ∃N ∈ N such that for all n > N , xn 6= a. Define a sequence
{yn} = {xn+N}. Then {yn} ⊆ A − {a}. Also by a HW problem since
xn → a, yn → a. Now by our hypothesis, f(xn+N ) = f(yn) → f(a). Also
by a HW problem, since f(xn+N )→ f(a), f(xn)→ f(a).

Case 2: {xn} has at most finitely many n, st xn 6= a.
Then there is an N ∈ N such that for all n > N , xn = a. Hence for all

n > N f(xn) = f(a). So f(xn)→ f(a).

Case 3: {xn} has infinitely many n st xn = a and infinitely many n st
xn 6= a.

Then we can define subsequences {xnk
} and {xmj} such that:

• for all k, xnk
= a

• for all j, xmj 6= a.

Now since for all k, xnk
= a we know that for all k, f(xnk

) = f(a). Hence
f(xnk

) → f(a). Also since xn → a, xmj → a and {xmj} ⊆ A − {a}. Thus
by hypothesis f(xmj )→ f(a). Now by a HW problem, f(xn)→ f(a). Thus
f is continuous at a. �

Intervals

Definition. A set J is said to have the interval property if ∀x, y ∈ J , if
x < z < y then z ∈ J .

Example: J = (1, 5] has the interval property, but N does not.

Note it is not hard to check that all of the usual bounded and unbounded
intervals have the interval property. In fact the converse is true. Proving
this requires a lot of cases, so we just prove one such case.

Lemma. Let A ⊆ R with the interval property. Suppose that A is bounded
below, unbounded above, and does not contain its glb. Let a = glb(A). Then
A = (a,∞).

Proof. We show that A ⊆ (a,∞) and A ⊇ (a,∞) .

(⊆) Let x ∈ A. Then x ≥ a = glb(A). Since A doesn’t contain its glb,
a 6∈ A. Thus x > a and hence A ⊆ (a,∞).

√

(⊇) Now let x ∈ (a,∞). Then x > a = glb(A). So x is not a lower bound
for A. Hence ∃b ∈ A st b < x. Also since A is unbounded above, ∃c ∈ A st
c > x. Now b, c ∈ A and b < x < c. So by the interval property x ∈ A.

√

Thus it follows that A = (a,∞). �
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The other cases (bounded, unbounded, containing or not containing lub
or glb) are proved similarly.

Now we use the interval property to study monotonic functions.

Definition. A function f : A→ R is strictly increasing if ∀x, y ∈ A with
x < y, then f(x) < f(y). A function f : A→ R is strictly decreasing if
∀x, y ∈ A with x < y, then f(x) > f(y).

Claim: If f is strictly increasing and x, y ∈ A st f(x) < f(y), then x < y.

Proof of Claim: Suppose not. Then x ≥ y. Now it follows that f(x) ≥
f(y) by definition of strictly increasing. ⇒⇐. Thus x < y.

Theorem. Let f : J → R be a strictly increasing function and let J and
f(J) both be intervals. Then f is continuous.

It seems surprising that we can deduce continuity from such a seemingly
weak hypothesis. Recall that we had a corollary to the IVT and Max-Min
Theorem which said if f : J → R is continuous and J is a closed bounded
interval then f(J) is a closed bounded interval. This theorem is a partial
converse to that theorem.

Proof. Let x0 ∈ J . We prove this when x0 is not an endpoint of J . The
proof when x0 is an endpoint is similar.

Since x0 is not an endpoint of J , there are x1 and x2 ∈ J such that
x1 < x0 < x2. Since f is increasing, it follows that f(x1) < f(x0) < f(x2).
Now, we use the ε− δ definition to prove continuity at x0.

Let ε > 0 be given. Let y1 = max{f(x0)−ε, f(x1)}. Since f(x1) < f(x0),
it follows that f(x1) ≤ y1 < f(x0). Let y2 = min{f(x0) + ε, f(x2)}. Since
f(x0) < f(x2), it follows that f(x0) < y2 ≤ f(x2). Since f(J) is an interval,
these inequalities imply that y1, y2 ∈ f(J). Hence ∃a1, a2 ∈ J such that
y1 = f(a1) and y2 = f(a2). Also since f(a1) = y1 < f(x0) < y2 = f(a2) and
f is strictly increasing, it follows that a1 < x0 < a2. Note now that we have
a1 and a2, we no longer care about x1 and x2.

x

f(x )

0

0

f(x )+ε0

f(x )-ε0

x1 x2

f(x )1

f(x )2

a1

=

f(x )0

f(x )-ε0

f(x )2

x0

f(x )+ε0y2=

f(x )1y1

a2
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Let δ = min{x0− a1, a2− x0} and let x ∈ J such that |x− xo| < δ. Then
x−x0 < δ ≤ a2−x0 and x0−x < δ ≤ x0−a1. Hence a1 < x < a2 and thus
f(a1) < f(x) < f(a2). Now we have

f(x0)− ε ≤ y1 = f(a1) < f(x) < f(a2) ≤ f(x0) + ε

Now it follows that |f(x)−f(x0)| < ε and hence f is continuous at x0. �

An Interesting Example

Let f : (0,∞)→ R by

f(x) =

{
0 if x 6∈ Q
1
q if x ∈ Q and x = p

q in lowest terms

Let’s consider f of some points.

1

1

½ 21½

½

¼

¼

¾

Theorem. Let f : (0,∞) → R be defined as above. Then f is continuous
at every irrrational and discontinuous at every rational.

Proof. We prove this with two claims.

Claim: f is discontinuous at every rational.

Proof of Claim: Let q ∈ Q and let {xn} be a sequence of irrationals
st xn → q. We proved such a sequence exists in a HW problem. Then
∀n ∈ N , f(xn) = 0. But f(q) 6= 0 since q ∈ Q. Thus f(xn) 6→ f(q). So f is
discontinuous at q.

Claim: f is continuous at every irrational

Proof of Claim: Let c ∈ R−Q. So f(c) = 0. We will use the ε−δ definition
of continuity to prove that f is continuous at c. Let ε > 0 be given. WTS
∃δ > 0 st if x ∈ (0,∞) and |x− c| < δ, then |f(x)− f(c)| = f(x) < ε.

First let’s consider the interval (c− 1
2 , c+ 1

2). The length of this interval
is 1. The endpoints of the interval are irrational and the interval does not
contain its endpoints. Thus the interval contains exactly 1 integer. Also, if
you don’t reduce the fractions, the interval contains exactly 2 rationals with
denominator 2, 3 rationals with denominator 3, etc. In general, (c− 1

2 , c+ 1
2)

contains q rationals with denominator q. Thus for any N ∈ N , (c− 1
2 , c+ 1

2)
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contains 1 + 2 + 3 + · · ·+N rationals with denominator ≤ N . In particular,
this number is finite.

Example of what we’re going to do: Suppose ε = 1
2 . There are

1 + 2 = 3 rationals in (c − 1
2 , c + 1

2) with denominator less than or equal
to 2. Pick δ to be the minimum distance to c of all of the rationals in
(c− 1

2 , c+ 1
2) with denominator equal to 1 or 2. Since c is irrational, δ > 0.

Then (c− δ, c+ δ) contains no rationals with denominator 1 or 2. So all the
rationals in (c−δ, c+δ) have denominator at least 3. Hence f of each rational
in (c−δ, c+δ) will be less than 1

2 . It follows that if x ∈ (c−δ, c+δ)∩(0,∞)∩Q,
then

f(x) ∈ (0,
1

2
) ⊆ (−1

2
,
1

2
) = (f(c)− ε, f(c) + ε)

Notice that in the following picture the integer n counts as both having
denominator 1 and denominator 2.

c
c-½ c+½

n
n+½

δ δ

Let N ∈ N st N > 1
ε . There are only finitely many rationals in the

interval (c− 1
2 , c+ 1

2)∩ (0,∞) whose denominators are less that or equal to
N , when the fraction is in lowest terms. So we can let δ be the minimum of
the distances of this finite number of rationals from c. That is, let

δ = min{|p
q
− c| st p

q
∈ (c− 1

2
, c+

1

2
) ∩ (0,∞) and q ≤ N}

Since we are taking a minimum of a finite set, δ exists. Also, since c ∈
R − Q, all of these differences are irrational. Hence δ > 0. Furthermore,
(c− δ, c+ δ) ⊆ (c− 1

2 , c+ 1
2). We prove as follows that this δ works for our

ε.

Let x ∈ (0,∞)∩ (c− δ, c+ δ). Then x ∈ (c− 1
2 , c+ 1

2)∩ (0,∞). If x 6∈ Q ,
then f(x) = 0 and hence f(x) < ε. Suppose x ∈ Q and x = p

q in lowest

terms. Then q > N , since |pq − c| < δ. Thus f(x) = f(pq ) = 1
q < ε. It follows

that f is continuous at c. �

Section 14: Series

Because we know so much about sequences, it is not hard to prove results
about series.

Definition. Let {an} be a sequence. Then ∀m ∈ N, define

Sm =

m∑
n=1

an = a1 + · · ·+ am
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We call Sm the mth partial sum of the infinite series
∞∑
n=1

an = a1 + a2 + . . .

Example: Let an = ( 1
10)n. Then ∀m ∈ N, Sm = .11 . . . 1 where there are

m 1’s.

Definition. We say the series
∑∞

n=1 an converges if the sequence {Sm}
converges. Otherwise, we say

∑∞
n=1 an diverges.

Example:
∑∞

n=1(
1
10)n = .1+.01+. . . . The sequence {Sm} = {.1, .11, .111, . . . }

converges because it is bounded and increasing. We can find the limit as we
did for {bn}.

Since we know that {Sm} converges, there exists some ` ∈ R such that

Sm → `

So

Sm+1 → `

and hence

10Sm+1 → 10`

But for every m ∈ N,

10Sm+1 = 1 + Sm → 1 + `

Thus

10` = 1 + `

so

` =
1

9

This an example of a special type of series:

Definition. A series of the form
∑∞

n=1 r
n is called a geometric series

Claim: If r 6= 1, then
∑m

n=1 r
n = 1−rm+1

1−r . Also,
∑∞

n=1 r
n converges iff

|r| < 1.

Proof. We do this in the round. The proof of the first part is by induction
on m. We prove the second part in cases as follows.

If |r| < 1, then rm+1 → 0. So Sm converges to 1
1−r .

If |r| > 1, then rm+1 is unbounded. So {Sm} diverges.

If r = −1, then {Sm} = {−1, 0,−1, 0, . . . }, which diverges.

If r = 1, then {Sm} = {1, 2, 3, 4, . . . }, which diverges. �
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Some special series have names.
∑∞

n=1
1
n is called the harmonic series

and
∑∞

n=1
1
n2 is called Euler’s series.

Theorem. The harmonic series diverges.

Proof. We will prove that the harmonic series diverges to infinity. Observe
that {Sm} is increasing, so we only need to show that {Sm} is unbounded.
Let M > 0 be given. We only need to show that there exists an m such that
Sm > M . The trick is to let k > 2M and consider S2k as follows.

S2k = 1 +
1

2
+

1

3
+ · · ·+ 1

2k

We group terms together so that each grouping ends with a power of 1
2 :

S2k = 1 +
1

2
+

(
1

3
+

1

4

)
+

(
1

5
+ · · ·+ 1

8

)
+ · · ·+

(
1

2k−1 + 1
· · ·+ 1

2k

)
≥ 1 +

1

2
+

(
1

4
+

1

4

)
+

(
1

8
+ · · ·+ 1

8

)
+ · · ·+

(
1

2k
· · ·+ 1

2k

)
= 1 +

1

2
+

(
2

4

)
+

(
4

8

)
+ · · ·+

(
2k−1

2k

)
= 1 +

(
k

2

)
> M

Hence Sm →∞ �

Theorem. Euler’s series converges.

Proof. In this case, since {Sn} is increasing, we only have to show that {Sn}
is bounded. We do this using a technique similar to the above proof of
unboundedness. Let k ∈ N be given. Let’s prove by induction that k ≤ 2k.

Since {Sn} is increasing, it follows that Sk ≤ S2k . Hence:

Sk ≤ S2k = 1+

(
1

22
+

1

32

)
+

(
1

42
+ · · ·+ 1

72

)
+· · ·+

(
1

(2k−1)2
· · ·+ 1

(2k − 1)2

)
+

1

(2k)2

≤ 1 +

(
1

22
+

1

22

)
+

(
1

42
+ · · ·+ 1

42

)
+ · · ·+

(
1

(2k−1)2
· · ·+ 1

(2k−1)2

)
+

1

22k

= 1 +
2

22
+

4

42
+ · · ·+ 2k−1

(2k−1)2
+

1

22k

=

(
1 +

1

2
+

1

4
+ · · ·+ 1

2k−1

)
+

1

22k

=
1− (12)k

1− 1
2

+
1

22k
= 2

(
1− (

1

2
)k
)

+
1

22k
≤ 2(1− 0) +

1

4
= 2

1

4

Hence {Sn} is bounded, and thus converges to its lub. �
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Not Null Test. Let
∑∞

n=1 an be a convergent series. Then an → 0.

Proof.
∑∞

n=1 an → ` for some `. Hence the sequence of partial sums Sm → `.
Also, Sm+1 → `. Hence Sm+1 − Sm → 0. But for every m, Sm+1 − Sm =∑m+1

n=1 an −
∑m

n=1 an = am+1. Thus am+1 → 0, and hence am → 0. �

Comparison Test. Suppose ∀n ∈ N, both an ≥ 0 and bn ≥ 0, and for some
N ∈ N, ∀n > N , an ≥ bn. If

∑∞
n=1 an converges then

∑∞
n=1 bn converges,

and if
∑∞

n=1 bn diverges, then
∑∞

n=1 an diverges.

Proof. The second conclusion is the contrapositive of the first conclusion, so
we only need to prove the first conclusion. Suppose that

∑∞
n=1 an converges.

For each m, let Sm =
∑m

n=1 an and Tm =
∑m

n=1 bn. Since an ≥ 0 and
bn ≥ 0, both {Sm} and {Tm} are increasing and bounded below. Since
{Sm} converges, it is bounded above. But since an ≥ bn for all n > N ,
Sm ≥ Tm for all m > N . Since {Tm} has only finitely many terms prior to
the N th term, {Tm} is bounded above. It follows that {Tm} converges and
hence

∑∞
n=1 bn converges. �

Limit Comparison Test. Suppose ∀n ∈ N, both an ≥ 0 and bn ≥ 0. Sup-
pose the sequence {anbn } converges. Then if

∑∞
n=1 bn converges, then

∑∞
n=1 an

converges.

Proof. Since the sequence {anbn } converges, it is bounded. So ∃M > 0 such

that ∀n ∈ N, |anbn | ≤ M . Thus ∀n ∈ N, an ≤ Mbn since both an ≥ 0

and bn ≥ 0. Since
∑∞

n=1 bn converges,
∑∞

n=1Mbn converges. Now by the
Comparison Test

∑∞
n=1 an converges. �

RatioTest. Suppose that ∀n ∈ N, an > 0. If an+1

an
→ ` < 1 then

∑∞
n=1 an

converges. If either an+1

an
→ ` > 1 or an+1

an
→∞, then

∑∞
n=1 an diverges.

Proof. Case 1: Suppose that an+1

an
→ ` < 1.

Pick ε > 0 such that ε < 1 − `. Now ∃N ∈ N such that if n > N then
|an+1

an
− `| < ε. Let n > N + 1. We use the following trick.

an = aN+1 ×
aN+2

aN+1
× aN+3

aN+2
× · · · ×

aN+(n−N)

aN−n−1
Recall that ∀m > N we have am+1

am
< ε + `. Thus we have

aN+2

aN+1
< ε + `,

aN+3

aN+2
< ε+ `, . . . ,

aN+(n−N)

aN+(n−N−1)
< ε+ `. Hence

an < aN+1 × (`+ ε)n−N−1 = aN+1 ×
(`+ ε)n

(`+ ε)N+1
=

aN+1

(`+ ε)N+1
× (`+ ε)n

Observe that the first term and ` + ε are constants (that is, they don’t
depend on n). To simplify, let c =

aN+1

(`+ε)N+1 and let r = `+ε. Now 0 < r < 1,

because we chose ε < 1 + `. By the above inequality, we have 0 < an < crn
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and r ∈ (0, 1). Also, the geometric series
∑∞

n=1 cr
n = c

∑∞
n=1 r

n converges.
Thus by the Comparison Test,

∑∞
n=1 an converges.

Case 2: Suppose that an+1

an
→ ` > 1.

Now let ε < ` − 1 and ε > 0. Now ∃N ∈ N such that if n > N then
|an+1

an
− `| < ε. Let n > N . Then 1 < ` − ε < an+1

an
. So an+1

an
> 1 which

implies that 0 < an < an+1. Hence {an} is positive and increasing for
n > N . Thus an 6→ 0. So by the Not Null Test,

∑∞
n=1 an diverges.

Case 3: Suppose that an+1

an
→∞.

Let M > 1, then ∃N ∈ N such that if n > N then an+1

an
> 1. Now as in

Case 2, if n > N , 0 < an < an+1 and hence
∑∞

n=1 an diverges. �

Theorem. Suppose that {an} is a non-increasing sequence of non-negative
numbers. Then

∑∞
n=1 an converges iff

∑∞
k=0 2ka2k converges.

Proof. Our proof of this result is similar to the proofs for the harmonic series
and Euler’s series. For each m, let Sm =

∑m
n=1 an and Tm =

∑m
k=0 2ka2k .

Observe that both {Sm} and {Tm} are increasing sequences which are bounded
below. Thus they converge if they are also bounded above.

(=⇒) Suppose that {Sm} converges. Then Sm → S = lub{Sm}. We will
show that {Tm} is bounded above by 2S. Let k ∈ N be given. Pick n > 2k.
Now we have:

Tk = a1 + 2a2 + 22a4 + · · ·+ 2ka2k = 2(
1

2
a1 + a2 + 2a4 + · · ·+ 2k−1a2k)

≤ 2(a1 + a2 + (a3 + a4) + · · ·+ (a2k−1+1 + · · ·+ a2k)

�


