
My teaching style:

• Proofs “In the round”. Most students love it, but some find it too slow.

• Irrelevant questions. Most students love it, but some find it too irrelevant.

• I talk fast, but I’m happy to repeat.

• I expect a high level of rigor in proofs.

• If any of the above are really going to bother you, then you shouldn’t take this
class.

1. Basic Outline of Course

This course has three parts.

(1) Background material and examples of topological spaces.

(2) Using known spaces to construct new spaces.

(3) Using topological properties to distinguish spaces.

We begin with an introduction to Part (1).

2. Intuitive introduction to Topology

What is geometry? Geometry is the study of rigid shapes that can be distinguished
with measurements (length, angle, area, . . . ).

What is topology? Topology is the study of those characteristics of shapes and spaces
which are preserved by deformations.

Topology versus Geometry: Objects that have the same topology do not necessarily
have the same geometry. For instance, a square and a triangle have different geometries
but the same topology. A line and a circle have different topologies, since one cannot be
deformed to the other. The topology of a space tells us the “essential structure” of the
space.

Motivation: We would like to know the topology of our universe and other possible
universes. Locally, our universe looks like R3, but that doesn’t mean that globally it’s R3.
Topologists would like to have a (infinite) list of all possible spaces that locally look like
R3. But finding such a list is an open question.
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Let’s think about the analogous question in 2-D

What are some examples of two-dimensional universes? A plane, a sphere, a torus, and
planes connected by one or more tubes.

These are topologically distinct universes. Adding a bump to one of these surfaces changes
its geometry but not its topology. Intuitively, we can see that the number and type of
“holes” is what distinguishes the topology of these surfaces. Hence we would like a math-
ematical way to describe holes. But this is not easy

3. Metric spaces

Recall the intuitive definition of continuity says that a function is continuous “if you can
draw it without any gaps”. This gives us the idea that the existence of holes has something
to do with continuity. So we take the definition of continuity as the actual starting point
for the course.

Question: Does anyone remember the definition of continuity for functions from R to R?

Since the definition of continuity makes sense for any space with a notion of distance, we
might as well consider continuity of functions between metric spaces.

Question: Does anyone remember the definition of a metric space from Real Analysis?

In Analysis we saw examples of metric spaces. Euclidean space and the discrete metric are
important examples that we will refer to. What’s the discrete metric?

Now we consider a different example.
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Example (The Comb Space.). Let X0 = {0} × [0, 1], Y0 = [0, 1] × {0}; and ∀n ∈ N, let
Xn = { 1

n
} × [0, 1]. Let M = (

⋃∞
n=0Xn) ∪ Y0 be “the comb”. The metric we use is the

distance measured along the comb in R2.

0 1

...

p

q

d(p,q)

Using the comb metric,

• Does the sequence {( 1
n
, 0)} converge in the comb metric space? Yes, to the origin.

0 1

...

• Does the sequence {( 1
n
, a)} converge when a ∈ (0, 1]?

No. We can see that the sequence isn’t Cauchy since for any m,n ∈ N, we have
d(( 1

n
, a), ( 1

m
, a) > 2a.
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...

0 1

X

The fundamental tool that we use in studying metric spaces is the “open ball”.

Question: Does anyone remember how we define an open ball in a metric space ?

Question: In the comb space, what is B 1
2
((0, 1))?

B 1
2
((0, 1)) is just a vertical interval along the y-axis going down from (0, 1)

0 1

...

B  ((0,1))
½

Question: In the comb space what is B2((0, 1))?

This is everything on the comb below the line of slope −1 that connects points (0, 1) and
(1, 0). Since it’s an open ball, the bounding line is not contained in the ball.
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0 1

...
B  (0,1))2

In Analysis we observed that balls aren’t closed under
⋂

and
⋃
, which makes them

bad.

Hence we defined open sets.

Question: What’s the definition of an open set in a metric space?

Recall the following Important theorems (Note the definition of “Important” in this class
is that you will probably need this result on the homework):

Theorem (“open sets behave well” theorem). Let F be the family of open sets in a metric
space (M,d). Then:

(1) M , ∅ ∈ F

(2) If U, V ∈ F then U ∩ V ∈ F

(3) If ∀i ∈ I, Ui ∈ F then
⋃
i∈I Ui ∈ F

Theorem (Continuity in terms of open sets theorem). Let M1 and M2 be metric spaces
and f : M1 → M2. Then f is continuous iff for every open set U ⊆ M2, f

−1(U) is open
in M1.
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From these two theorems we see that open sets are wonderful. In fact, if continuity is what
we are after (to understand holes), we only need open sets, we don’t need open balls or
even a metric. So rather than defining open sets in terms of open balls, we just choose any
collection of sets which is well behaved in terms of

⋃
and

⋂
and declare them to be our

open sets.

4. Topological Spaces

Definition. Let X be a set and F be some collection of subsets of X such that

1) X, ∅ ∈ F .
2) If U, V ∈ F then U ∩ V ∈ F .

3) If for all i ∈ I, Ui ∈ F , then
⋃
Ui ∈ F .

Then we say that (X,F ) is a topological space whose open sets are the elements of F .
We say F is the topology on X.

Note we are choosing the collection F of open sets for X. There is more than one choice
of F for a given X. Just remember balls are not defined in an arbitrary topological space.

Example. Let (M,d) be any metric space and F be the set of open sets in M . Then
(M,F ) is a topological space.

Example. Let M be a set and d be the discrete metric, then we say M has the discrete

topology. What sets are open in the discrete topology? We can also define the discrete
topology without starting with a metric by saying every subset of M is open.

Example. Let X be a set with at least 2 points. Let F = {X, ∅}. Then we say (X,F ) is
the indiscrete, or concrete topology. Why do we require X to have at least 2 points?

Definition. If F1 and F2 are topologies on X and F1 ⊆ F2 then we say that F1 is weaker

than F2, and F2 is stronger than F1.

This is hard to remember. So we have the following notes.

• weaker = smaller = coarser = fewer grains of sand (which are the open sets)

• stronger = bigger = finer = more grains of sand (which are the open sets)

• The discrete topology is the strongest topology on M . Why?

• The indiscrete topology is the weakest topology on X.

Example. Let X = R and U ∈ F iff U is the union of sets of the form [a, b) such that
a, b ∈ R together with the empty set. (This is called the half-open interval topology).
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Question: Is the half-open topology (R, F ) weaker, stronger, or neither compared to the
usual topology?

If every open interval (a, b) is in F , then F is stronger (i.e. bigger). Let a, b ∈ R, and
a < b. Then,

(a, b) =
⋃

n∈N
[a+

1

n
, b),

so F is stronger.

Example. We define the “dictionary order” on X = R2 by:

(a, b) < (c, d) if either a < c or a = c and b < d.

We define the dictionary topology F on R2 as U ∈ F iff U is a union of “open intervals”,
of the form

U = {(x, y) | (a, b) < (x, y) < (c, d)}.

• Is a vertical line open? Yes.

• Is a horizontal line open? No.

• Is this topology finer or coarser or neither than the usual topology on R2?

Any point in an open ball in the usual topology on R2 is contained in an open
interval of the dictionary topology, which is contained in the ball. Thus open balls
are open in the dictionary topology. Hence the dictionary topology is finer than
the usual topology.
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Question: Are the topologies on a set linearly ordered? No!

Example. Consider R with the usual topology and (R, F ) with F = {R, ∅, {47}}. We say
these two topologies are incomparable.

Example. Consider (R, F ) where U ∈ F if and only if either U = ∅, U = R, or R − U is
finite. This topology is called the finite complement topology on R. How does this
topology compare with the usual topology?

We see that if U is open in (R, F ), then U is open in the usual topology. Therefore the
usual topology is finer than the finite complement topology.

Definition. A set C in a topological space (X,F ) is closed iff its complement X − C is
open.

Note that a set can be both open and closed (i.e., clopen) as well as neither open nor closed.
(In particular, a set is not a door!)

Question: Is there a non-trivial clopen set in R with the half-open interval topology?

Yes, [0,∞) =
⋃
n∈N[0, n) is open. On the other hand, the complement of this set is

(−∞, 0) =
⋃
n∈N[−n, 0), which is also open. Thus this is a clopen set.

Question: Is there a non-trivial clopen set in R2 with the dictionary order?

Yes, a vertical line

Question: Is there a non-trivial clopen set in R with the finite complement topology?

No, if U is clopen then so is R − U . But if U is non-trivial then both U and R − U are
finite.

Lemma. Let (X,F ) be a topological space and A be the set of all closed sets in X. Then:

(1) X, ∅ ∈ A

(2) If C,D ∈ A, then C ∪D ∈ A

(3) If Ci ∈ A for every i ∈ I, then
⋂
i∈I Ci ∈ A

The proof follows from the definition of open sets together with the equations:

X −
⋂

i∈I
Ui =

⋃

i∈I
(X − Ui)
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and
X −

⋃

i∈I
Ui =

⋂

i∈I
(X − Ui)

We don’t prove this because it’s boring. Soon we will start doing proofs in the round.

Since open and closed sets behave well under unions and intersections, we would like to
approximate arbitrary sets by open and closed sets. We will define interior and closure for
this purpose.

Definition. Let (X,F ) be a topological space and A ⊆ X. Let {Uj | j ∈ J} be the set of

all open sets contained in A. Then we define
◦
A = Int(A) =

⋃
j∈J Uj , and we say

◦
A is the

interior of A.

interior

of

blob

blob

Intuitively,
◦
A is the “largest”open set contained in A. But what exactly do we mean by

“largest”?

A does not contain a proper subsetB which is open and contains
◦
A as a proper subset.

Small Fact. Let (X,F ) be a topological space and A ⊆ X. Then

(1)
◦
A ⊆ A

(2)
◦
A is open

(3) If U ⊆ A is open, then U ⊆
◦
A

(4) A is open iff A =
◦
A.

Proof. go around



10

(1) Since
◦
A =

⋃
j∈J Uj and Uj ⊆ A for every j ∈ J ,

◦
A ⊆ A.

(2) By definition,
◦
A is a union of open sets, so

◦
A is open.

(3) Since U is open in A, U ∈ {Uj | j ∈ J}. Therefore U ⊆ ⋃
j∈J Uj =

◦
A.

Note that this means that
◦
A is the “largest” open set in A.

(4) Suppose that A =
◦
A. Then

◦
A is open by part (2), hence A is open.

Conversely, suppose that A is open. Then A ∈ {Uj | j ∈ J}. Hence A ⊆
◦
A. From

(1), A =
◦
A. �

Example. In the half-open interval topology on R, Int((0, 1]) = (0, 1). To prove this,
assume that 1 ∈ Int((0, 1]) and show that it leads to a contradiction.

Example. In the finite-complement topology on R, Int((0, 1]) = ∅. This follows from the
fact that R− ((0, 1]) is infinite.

Example. In the dictionary-order topology on R2, Int([0, 1] × [0, 1]) = [0, 1] × (0, 1).

1

1

1

1

A Int(A)

Next we want to approximate sets by closed sets.

Definition. Let A be a subset of a topological space (X,F ), and let {Fj | j ∈ J} be the set
of all closed sets containing A. Then the closure of A is defined as A = cl(A) =

⋂
j∈J Fj .
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closure

of

blob

blob

Observe that A is the smallest closed set containing A.

Small Fact. Let (X,F ) be a topological space and A ⊆ X. Then

(1) A ⊆ A

(2) A is closed

(3) If A ⊆ C and C is closed, then A ⊆ C

(4) A = A if and only if A is closed.

The proofs are left as exercises.

Example. In R with the usual topology, cl
({

1
n
|n ∈ N

})
=

{
1
n
|n ∈ N

}
∪ {0}

Example. In R with the half-open interval topology, cl((0, 1]) = [0, 1]

Lemma (Important Lemma). Let (X,F ) be a topological space and Y ⊆ X. Then p ∈ Y
if and only if for every open set U ⊆ X containing p, U ∩ Y 6= ∅.

Note that Important Lemmas are results that should be used on the homework if you’re
stuck.
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Y

p
U

y

Proof. (=⇒) Let p ∈ Y and U ⊆ X be open with p ∈ U . Suppose U ∩ Y = ∅ and let
C = X − U . Then p /∈ C because p ∈ U . Also, by the Small Facts Y ⊆ C because Y ⊆ C
and C is closed. Now since p ∈ Y , we have p ∈ C which is a contradiction.

(⇐=) Suppose that for every open set U ⊆ X such that p ∈ U , U ∩ Y 6= ∅. In order to
prove that p ∈ Y , we need to show that p is in every closed set containing Y . So let C ⊆ X
be closed such that Y ⊆ C. Suppose p /∈ C. Let U = X − C, which is open with p ∈ U .
Now U ∩ Y 6= ∅, so there exists some x ∈ U ∩ Y . This means that x ∈ U = X − C, and
hence x /∈ C. But since Y ⊆ C, we have x /∈ Y , giving us a contradiction. Therefore we
conclude that p ∈ C and hence p ∈ Y . �

Corollary. Suppose that U is an open set in a topological space (X,F ) and Y ⊆ X. If
U
⋂
Y 6= ∅, then U ⋂

Y 6= ∅.

Proof. The proof is immediate from the Important Lemma.

Now we can use the Important Lemma to conclude that in R with the usual topology we
have cl({1/n | n ∈ N}) = {1/n | n ∈ N} ∪ {0}. Observe from the figure that for all open
sets U containing 0, we have U

⋂{
1
n
| n ∈ N

}
6= ∅.

0 1

On the other hand this is not true for any point outside of {1/n | n ∈ N} ∪ {0}.
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5. Continuity in Topological Spaces

Recall that we have the following theorem for metric spaces:

Theorem. Let (M1, d1) and (M2, d2) be metric spaces and f : M1 → M2. Then f is
continuous if and only if for every U ⊆ M2 that is open in (M2, d2), f

−1(U) is open in
(M1, d1).

This motivates the following definition:

Definition. Let (X1, F1) and (X2, F2) be topological spaces and f : X1 → X2. We say f
is continuous if and only if for every U ∈ F2, f

−1(U) ∈ F1.

Small Fact. Let (X1, F1) and (X2, F2) and (X3, F3) be topological spaces, f : X1 → X2

and f : X2 → X3 be continuous functions. Then g ◦ f : X1 → X3 is continuous.

Proof. Let U ∈ F3. Then g−1(U) ∈ F2 because g is continuous, and f−1(g−1(U)) ∈ F1

because f is continuous. Therefore (g ◦ f)−1(U) ∈ F1. Thus g ◦ f is continuous. �

Theorem. Let X, Y be topological spaces and f : X → Y . Then f is continuous if and
only if for every closed set C in Y , f−1(C) is closed in X.

f

X Y

C
f    (C)-1

Proof. Before we prove either direction, we prove the following set theoretic result.

Claim: For every set A ⊆ Y , we have f−1(Y −A) = X − f−1(A).

Proof of Claim: f−1(Y − A) = {x ∈ X | f(x) ∈ Y − A} = {x ∈ X | f(x) /∈ A} =
X − {x ∈ X | f(x) ∈ A} = X − f−1(A)

(⇒) Suppose f is continuous and C is closed in Y . Then Y − C is open, implying that
f−1(Y − C) = X − f−1(C) is open in X. Hence f−1(C) is closed.

(⇐) Suppose that for every closed set C in Y , f−1(C) is closed in X. Let U be open in
Y . Now f−1(Y − U) = X − f−1(U) is closed in X. Hence f−1(U) is open in X. �

This is nice, because sometimes it’s easier to work with closed sets than with open sets.
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Definition. Let X and Y be topological spaces, and let f : X → Y .

(1) If for every open set U ⊆ X, f(U) is open in Y , then we say f is open.

(2) If for every closed set U ⊆ X, f(U) is closed in Y , then we say f is closed.

This is sort of like continuity, except that we care about the images of sets instead of their
preimages.

Example. Let F be the half-open topology on R, and define a function

f : (R, F ) → (R,usual) by f(x) = x

• Is f continuous? Yes! An open set in (R,usual) is a union of intervals of the form
(a, b). We know that f−1

(
(a, b)

)
= (a, b), which is open in F .

• Is f open? No. Take any U = [a, b) ∈ F . Then f(U) = [a, b), which is not open
in (R,usual).

• Is f closed? Also no, since f
(
[a, b)

)
= [a, b) is not closed in (R,usual).

6. Homeomorphisms

Now we define what we mean by equivalence for topological spaces.

Definition. Let (X1, F1) and (X2, F2) be topological spaces, and let f : X1 → X2 be
continuous, bijective, and open. Then f is a homeomorphism, and X1 and X2 are
homeomorphic (denoted by X1

∼= X2).

Example. Let I = [0, 1] and X = I × I ⊂ R2, under the usual metric for R2. Let
Y = {(x, y) ∈ R2|x2 + y2 ≤ 1} = D2 be the unit disk in R2. Question: Are X and Y
homeomorphic?

Answer: Yes! Let’s see how.

Define the centers of X and Y to be x and y, respectively. Fix some point a on the
boundary of X, and some b on the boundary of Y (that is, a ∈ ∂X and b ∈ ∂Y ).

Define a function f as follows:

• f(x) = y

• f(a) = b

• For t ∈ ∂X, look at the distance along the boundary from a to t. Then f(t) is a
point proportionally far along the boundary of Y .

• For s ∈ int(X), draw the ray connecting x and s. Let t be the point at which
this ray intersects ∂X. Now, in Y , draw the ray connecting y and f(s). Then s
is mapped to a point on this ray that is proportionally far from y.
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The last two, in pictures:

x

a

t

b

f(t)

y

X Y

x

a

t

b

f(t)

y

X Y

f(s)
s

• Is this well-defined?

– Yes! There is always exactly one point in Y that a point in X is mapped to1.

• Is this a bijection?

– Yes! The inverse is defined identically, so it would make sense for this to be
a bijection. Also, consider the images of concentric squares centered on x
under f : they are mapped to disjoint concentric circles centered on y.

• Is f continuous and open?

– Yes! Intuitively, it’s easy to see that an open set in X is mapped to an open
set in Y , and that the preimage of an open set in Y is open.

This is good, since our intuition is that a square a circle should be the same topologically,
since one can be deformed to the other.

Question: Can we extend this to (some) non-convex regions?

Answer: Sure. Just divide up the non-convex region into smaller regions. A subregion
will work as long as there is some point in its interior such that any ray from that point
intersects the subregion’s boundary exactly once.

1This works because both a square and a circle are convex shapes - that is, for all points p, q ∈ X, the

line pq that connects p and q lies entirely within X. This also implies that x and y didn’t actually have to

be the exact centers of X and Y respectively.
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However, there are limits to this: for example, an annulus is not homeomorphic to a disk.
This is hard to show; we’ll see a proof later.

There are also some homeomorphisms that we might find unsettling. For example, a
knot in R3 and the unit circle S1 = {(x, y) ∈ R2|x2 + y2 = 1} are homeomorphic; the
argument works exactly like the one used for ∂X when showing that a square and circle
are homeomorphic (above). It turns out that, while the knot and circle are homeomorphic,
their complements are not, but the proof is beyond the scope of this class.

Example. Define a function f : [0, 1) → S1 by

f(t) =
(
cos(2πt), sin(2πt)

)

This takes the interval and wraps it counterclockwise around the circle.

• Is this a bijection?

– Yes! The interval wraps once around the circle; one end is open, so there is
no overlap.

• Is f continuous?

– Yes! Recall that an open ball in S1 is Bε(a) = {x ∈ S1 | d(x, a) < ε}. Then
the preimage of every open ball in S1 is an open interval, so f is continuous.

• Is f open?

– No. Let U = [0, 1/2), which is open in [0, 1). Sadly, its image is not open in
S1.
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f
[ )

0 1½

) ](

So this f is not a homeomorphism.

We will show that R2 6∼= R3 eventually. This is difficult.

Example. Some non-examples of homeomorphisms:

• Q under the usual topology is not homeomorphic to R under the usual topology,
since there is no bijection between Q and R.

• R with the finite-complement topology (FCT ) is not homeomorphic to R with
the usual topology.

Proof in the round:

– Suppose that there is some homeomorphism f : (R, FCT ) → (R,usual). Let
U = (0, 1).

– Look at f−1(U) - it must be open, since f is a homeomorphism.

– It is definitely not equal to ∅, since U 6= ∅.
– It is also not R, since f is a bijection.

– So R− f−1(U) must be finite. But R− U is not finite.

– Because f is a bijection, this is a contradiction.

– Therefore, (R, FCT ) 6∼= (R,usual).

7. Subspaces

Definition. Let (X,FX ) be a topological space, and let Y ⊆ X. Let FY = {U ∩ Y |U ∈
FX}. Then FY is the subspace topology or induced topology on Y .

Example. Consider the topological space R2 with the dictionary order.
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Q: What are the open sets in the subspace Z× Z?
A: All sets are open. We can draw a small open interval about any point, so the set of any
one point is open, and any set is the union of such sets.

(
)

Because of all sets are open, this is the discrete topology on Z× Z.

Example. Consider Z × Z as a subspace of R2, but this time with the usual topology.
Again, all sets are open, as we can construct an open ball of radius 1

2 about any point that
doesn’t intersect any others in the same way that we can construct an open interval. Thus
again this is the discrete topology.

Small Fact. Let (X,FX ) and (Y, FY ) be topological subspaces with (S,FS) a subspace
of X and (T, FT ) a subspace of Y . Then

(1) If S ∈ FX , then FS ⊆ FX .

(2) A subset C is closed in S iff ∃ a closed set A in X such that C = A ∩ S.
(3) Suppose f : X → Y is continuous. Then f | S : S → Y is continuous.

(4) Suppose f : X → Y is continuous and f(X) ⊆ T . Let g : X → T be defined by
g(x) = f(x) for every x ∈ X. Then g is continuous.

Proof. (1) If S ∈ FX , then S is open in X. By definition FS = {U ∩S : U ∈ FX} ⊆
FX

(2) (⇒) Let C ⊆ S be closed. Because S − C ∈ FS , there is some U ∈ FS such that
U ∩ S = S − C. Since U is open in X, we know that X − U is closed in X.
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We claim that the closed set we desire is X − U . Note that

(X − U) ∩ S = (X ∩ S)− (U ∩ S) = S − (U ∩ S) = S − (S − C) = C

and so we are done

(⇐) Suppose that there is a closed set A ⊆ X such that C = A ∩ S. Then
X−A ∈ FX , so (X−A)∩S ∈ FS . But (X−A)∩S) = (X∩S)−(A∩S) = S−C
is open in S, so C is closed in S.

(3) Let U ∈ FY . Since f is continuous, f−1(U) ∈ FX . Because (f |S)−1(U) =
f−1(U) ∩ S, (f |S)−1(U) is the intersection of an open set with S and so is open.
Therefore, f |S is continuous.

(4) Let U ∈ FT . Then there is some V ∈ FY such that U = V ∩T . Because f : X → Y
is continuous, f−1(V ) ∈ FX . Since f(X) ⊆ T ,

f−1(U) = f−1(V ∩ T ) = f−1(V )

Therefore, f−1(U) is open in X. But f−1(U) = g−1(U), so g−1(U) is open and so
g is continuous. �

8. Bases

You may have noticed that, in metric spaces, the idea of open balls was quite useful. In
particular, open balls have a standard form and any open set is just a union of open balls.
We’d like to have a similar idea in topological spaces.

Definition. Let (X,F ) be a topological space and β ⊆ F such that for every U ∈ F , U
is a union of elements in β. Then we say that β is a basis for F .

Note that a basis is not necessarily minimal (unlike a basis of a vector space), but it is
more useful the more specific it is.

Example. R with the half-open interval topology was defined by the basis
{
[a, b) | a < b

}
.

Example. R2 with the dictionary topology was similarly defined by a basis of open inter-
vals.

Theorem. Let X be a set and β a collection of subsets of X such that

(1) X =
⋃

B∈β
B

(2) For all B1, B2 ∈ β and x ∈ B1 ∩B2, ∃ B3 ∈ β such that x ∈ B3 ⊆ B1 ∩B2.
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B1 B2

B3

x

Let F = {unions of elements of β} ∪ {∅}. Then F is a topology for X with basis β.

Note, this theorem tells us that it is easy to construct a topology by defining a basis and
just checking properties 1) and 2).

Proof. We prove that F is a topology for X by showing the three properties of a topo-
logical space as follows.

(1) Since X =
⋃

B∈β
B, by definition X ∈ F . We also have ∅ ∈ F .

(2) Let U, V ∈ F . Hence we know that there exist index sets I and J such that
U =

⋃
i∈I Bi and V =

⋃
j∈J Bj . Consider U ∩ V = (

⋃
i∈I Bi) ∩ (

⋃
j∈J Bj). Let

x ∈ U ∩V . Then there exists ix ∈ I and jx ∈ J such that x ∈ Bix ∩Bjx. From our
second assumption we know there exists a Bx ∈ β such that x ∈ Bx ⊆ Bix ∩Bjx .
Let W =

⋃
x∈U∩V Bx. Since W is a union of elements of β it is clearly in F .

WTS: W = U ∩ V

(⊇) For all x ∈ U ∩ V , we know that x ∈ Bx ⊆ ⋃
x∈U∩V Bx = W . Therefore

U ∩ V ⊆W .

(⊆) For all y ∈W , ∃x ∈ U ∩V such that y ∈ Bx ⊆ Bix ∩Bjx ⊆ U ∩V . Therefore,
W ⊆ U ∩ V .

We have containment in both directions, so W = U ∩ V .

(3) Suppose ∀k ∈ K, Uk ∈ F .

WTS:
⋃
k∈K Uk ∈ F .

For all k ∈ K, Uk =
⋃
i∈Ik Bi. Hence

⋃
k∈K Uk =

⋃
k∈K(

⋃
i∈Ik Bi) ∈ F , since it is

a union of elements of β.

Therefore F is a topology. By definition, β is also a basis of F . �
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Small Fact. Let (X,FX ) and (Y, FY ) be topological spaces with bases of βX and βY
respectively, and f : X → Y .

(1) f is continuous iff ∀ B ∈ βY , f
−1(B) ∈ FX .

(2) f is open iff ∀ B ∈ βX , f(B) ∈ FY .

Proof. (of (1) only. (2) is virtually identical.)
(⇒) Suppose f is continuous. Then ∀ U ∈ FY , f

−1(U) ∈ FX by the definition of continuity.
In particular, if B ∈ βy, then B ∈ FY and f−1(B) ∈ FX .

(⇐) Suppose B ∈ βY implies f−1(B) ∈ FX . Let U ∈ FY . Hence U =
⋃
i∈I Bi for some

index set I. Therefore,

f−1(U) = f−1(
⋃

i∈I
Bi) =

⋃

i∈I
f−1(Bi) ∈ FX ,

since we know f−1(Bi) ∈ FX for all i and unions of elements of FX are in FX . �

Tiny Fact (Important Tiny Fact about Bases). Let (X,FX ) be a topological space with
basis β and let W ⊆ X. Then W ∈ FX iff ∀p ∈W , ∃Bp ∈ β such that p ∈ Bp ⊆W .

This says that basis elements behave like balls.

Proof. (=⇒) Let W ∈ FX . Then W =
⋃
i∈I Bi with Bi ∈ β for all i ∈ I. So ∀p ∈ W ,

∃Bp ∈ β such that p ∈ Bp ⊆W . X

(⇐=) Suppose W ⊆ X such that ∀p ∈ W , ∃Bp ∈ β such that p ∈ Bp ⊆ W . Then
W =

⋃
p∈W Bp. Hence W ∈ FX . �

Important Rule of Thumb. Using basis elements rather than arbitrary open sets often
makes proofs easier.

Making new spaces from old

This is the beginning of Part 2 of the course.

9. Quotient Spaces

First we will consider quotients of sets.

Definition. Let X be a set and ∼ a relation on X. We say ∼ is an equivalence relation

if

(1) ∀ x ∈ X, x ∼ x (reflexivity)
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(2) ∀ x, y ∈ X if x ∼ y then y ∼ x (symmetry)

(3) If x, y, z ∈ X and x ∼ y and y ∼ z, then x ∼ z (transitivity)

Definition. Let X be a set with an equivalence relation ∼. Then ∀ a ∈ X define the
equivalence class of a as

[a] = {x ∈ X : x ∼ a}.

Definition. Let X be a set with an equivalence relation ∼. Then the quotient of X by
∼ is

X/∼= {[p] : p ∈ X}.

NOTE: The equivalence classes partition X. What does this mean? (∀ x ∈ X, x ∈ exactly
one equivalence class)

Question: give me an example of an equivalence relation other than =.

We want to think of starting with a set X, and then think of X/ ∼ as what happens when
equivalent points of X are glued together.

Example. Let X = [0, 1] and x ∼ y iff x = y or x, y ∈ {0, 1}. This “glues” the interval
[0, 1] into a circle.

0 1

X
{0,1}

X/~

Definition. Let X be a set and ∼ an equivalence relation. We define

π : X → X/∼
by π(x) = [x]. We say π is the projection map.

Tiny Fact. Let X be a set with equivalence relation ∼. Then

(1) π is onto

(2) π is one-to-one iff “∼” is “=”.

Proof. (1) Let [x] ∈ X/∼. Then π(x) = [x]. Therefore π is onto.
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(2) (⇒) Suppose π is one-to-one. Let x, y ∈ X and x ∼ y. Then [x] = [y] and
π(x) = π(y), implying x = y since π is one-to-one.
(⇐) Suppose “∼” is “=”. Let x, y ∈ X such that π(x) = π(y). Then {x} = [x] =
[y] = {y}, and x = y.

�

Now we would like to define a topology such that π is continuous.

Definition. Let (X,FX ) be a topological space and ∼ be an equivalence relation on X.
We define

F∼ = {U ⊆ X/∼: π−1(U) ∈ FX}
and call (X/∼, F∼) the quotient space of X with respect to ∼.

Example: Let X = [0, 1] and x ∼ y iff x = y or x, y ∈ {0, 1}. This “glues” the interval
[0, 1] into a circle.

Question: Is the quotient topology on the circle the same as the subspace topology induced
by R2? Yes.

Question: Is π necessarily open? Answer: No

The interval [0,1/2), which is open in [0,1] is mapped to a half circle which is not open in
the quotient space because it’s inverse image contains the isolated point 1.

π

Small Fact. Let (X,FX ) be a topological space and ∼ be an equivalence relation on X.
(X/∼, F∼) is a topological space and π is continuous.

Proof. First let us prove that F∼ is a topology on X/∼.

(1) Since π−1(X/∼) = X ∈ FX , we have (X/∼) ∈ F∼. Since π−1(∅) = ∅ ∈ FX , we
have ∅ ∈ F∼.

(2) Let U, V ∈ F∼. Now

π−1(U ∩ V ) = π−1(U) ∩ π−1(V ) ∈ FX

since π−1(U) ∈ FX and π−1(V ) ∈ FX . Therefore U ∩ V ∈ F∼.
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(3) Consider π−1(
⋃
i∈I Ui) =

⋃
i∈I π

−1(Ui).

Since for each i, π−1(Ui) ∈ F∼, the arbitrary union of such sets must also be open.
Thus by the above equality, π−1(

⋃
i∈I Ui) ∈ F∼, completing the proof.

Note that the continuity of π follows directly from the quotient topology.�

Example. Let X = I× I, where I is the unit interval. Define an equivalence relation on X
as follows: (x, y) ∼ (x′, y′) if and only if either (x, y) = (x′, y′) or x = x′ and y, y′ ∈ {0, 1}.
This equivalence “glues together” the top and bottom edges of the unit square. This
basically rolls up the unit square, so topologically X/∼ gives us a cylinder.

(0,1)

(0,0) (1,0)

(0,0)~(0,1)

(1,0)~(1,1)

X X/~

(1,1)

Example. Let X = R2 and suppose (x, y) ∼ (x′, y′) if and only if ∃n,m ∈ Z such that
x = x′ + n, y = y′ +m.

Note that X may be divided into squares with integer sides such that under ∼ all of the
given squares are equivalent. Thus we need only consider one such square, noting that the
opposite sides are equivalent, yielding a torus. This is pretty much the same as the above
example, except that we roll up the cylinder too. In the picture, we are identifying all lines
of the same color.

We may also generalize this idea to higher dimensions, yielding the analogous torus for
that dimension (i.e. X = R3 yields a 3-torus and so on).

In general, we say that a region is a fundamental domain if it is the smallest region such
that gluing it up gives us the same quotient space as the quotient space obtained by gluing
up the entire space. For example, the square in the above example. It’s often useful to
identify a fundamental domain in order to get an intuitive picture of what the quotient
space looks like.
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Example. Let Sn = {x ∈ Rn+1 | ‖x‖ = 1}. Define x ∼ y ⇔ x = ±y. We denote the
quotient space Sn/∼ by RPn. This space is called real projective n-space.

Note that for n = 1 we obtain the unit circle such that points connected by a diameter are
equivalent. Thus any semi-circle forms a fundamental domain. Such a semicircle has it’s
endpoints as equivalent, and is thus topologically equivalent to the original circle. Thus
RP1 ∼= S1.

From the above, RP2 = S2/∼. We simply note that the fundamental domain is a hemi-
sphere whose boundary has opposite points glued.

Example. Let X = R2 and define (x, y) ∼ (x′, y′) ⇔ x2 + y2 = x
′2 + y

′2.

Under ∼, any points on a circle centered at the origin are equivalent. Collapsing all such
circles to points, we find that X/∼ is a ray emanating from the origin (it’s pink in the
picture).

2
2/~

Example: Poincare Dodecahedral space could be our universe (bring a dodecahedron)

Now we consider a different approach to quotient spaces which starts with a function

rather than an equivalence relation.

Definition. Let X,Y be sets and f : X → Y be onto. We define the relation ∼ induced

by f as follows:

∀p, q ∈ X, p ∼ q ⇔ f(p) = f(q)
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It is clear that ∼ is an equivalence relation on X because = is an equivalence relation on
Y.

Since f induces ∼, We could say that f induces X/ ∼ But we would like to go directly
from a function to the quotient space, without having to mention the equivalence relation.
To do this we let f play the role of π. Then define a topology on Y to make f continuous.

Definition. Suppose (X,FX ) is a topological space and Y is a set. Let f : X → Y be
onto. Then the quotient topology on Y with respect to f is given by:

Ff = {U ⊆ Y |f−1(U) ∈ FX}

We say that f is a quotient map from (X,FX ) to (Y, Ff ).

Tiny Fact. (1) (Y, Ff ) is a topological space.

(2) f : (X,FX ) → (Y, Ff ) is continuous.

(3) The quotient topology is the strongest topology on Y such that f is continuous.

Proof is left as an exercise.

Example. Let f map the closed segment [0, 1] to a figure-eight, where f(0) = f(1) = f(12)
at the intersection of the two sides of the figure-eight. What is open in the quotient topology
(Y, Ff )?

• Any open-looking interval on the eight that does not contain the intersection point
is open since its preimage is clearly open on the segment; for the same reason, any
appropriate union or intersection of these open intervals is also open.

• Furthermore, any open set in the figure-eight that includes the point at the cross
must also contain an open interval of nonzero length extending along each of the
four legs of the figure-eight. This is necessary because the definition of Ff requires
that the preimage of anything open must be open itself; hence the only way for the
preimage of a set containing the intersection point to be open is if the preimage
is an open set in [0, 1] containing the three preimages of the intersection point (0,
1
2 , and 1).
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f(0) = f(1/2) = f(1)

f

f 
-1

0 ½ 1

The following theorem tells us that our two approaches to quotient spaces are equivalent.

Theorem. Let (X,FX ) be a topological space and let Y be a set, f : X ։ Y onto, and ∼
induced by f . Then (Y, Ff ) ∼= (X/∼, F∼).

We say a diagram commutes if the path taken does not affect the result. Note that the
arrow representing g is dashed because we have not yet defined g. In the proof, we will
define g so that the diagram does commute, and then prove that g is a homeomorphism.

X
f

//

π

��✺
✺✺

✺✺
✺✺

✺✺
✺✺

✺✺
✺ Y

X/∼

g

DD✡
✡

✡
✡

✡
✡

✡

Proof. Define g : X/∼→ Y by g([x]) = f(x) where x is a representative of the equivalence
class [x]. We need to show that f is well-defined, one-to-one, onto, continuous, and open.

• Well-defined: WTS if [x] = [y], then g([x]) = g([y]). That is, any representative
of a given equivalence class maps to the same value. Suppose [x] = [y]. Then
x ∼ y. Now since ∼ is the relation induced by f , we have f(x) = f(y). Now by
definition of g we have g([x]) = g([y]).

• One-to-one: Suppose g([x]) = g([y]). Then f(x) = f(y) ⇒ x ∼ y ⇒ [x] = [y].

• Onto: Suppose y ∈ Y . Since f is onto, we know ∃x ∈ X such that f(x) = y. So
g([x]) = f(x) = y.

• Continuous: WTS U ∈ Ff ⇒ g−1(U) ∈ F∼. Suppose U ∈ Ff . Recalling that
F∼ = {O ⊆ X/ ∼ |π−1(O) ∈ FX}, to show that g−1(U) ∈ F∼, we need to
show that π−1(g−1(U)) ∈ FX . Recall that by definition of Ff we have U ∈ Ff
⇔ f−1(U) ∈ FX . Thus we know that f−1(U) ∈ FX . If we could show that
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f−1(U) = π−1(g−1(U)), then we would know that π−1(g−1(U)) ∈ FX . Note since
since f and π are not bijections, this is not obvious. We show

f−1(U) = π−1(g−1(U))

by showing containment in both directions.

(⊆) Let x ∈ f−1(U). Hence f(x) ∈ U . WTS that x ∈ π−1(g−1(U)) = {p ∈ X|g ◦
π(p) ∈ U}. But g ◦ π(x) = g([x]) = f(x) ∈ U , and hence x ∈ π−1(g−1(U)).

(⊇) Let x ∈ π−1(g−1(U)). Hence g(π(x)) ∈ U ⇒ g([x]) ∈ U ⇒ f(x) ∈ U . So
x ∈ f−1(U).

∴ f−1(U) = π−1(g−1(U)). Since f−1(U) ∈ FX , π
−1(g−1(U)) ∈ FX . Thus

g−1(U) ∈ F∼.

• Open: WTS U ∈ F∼ ⇒ g(U) ∈ Ff . Suppose U ∈ F∼. Recalling that Ff = {O ⊆
Y |f−1(O) ∈ FX}, to show g(U) ∈ Ff , we need to show that f−1(g(U)) ∈ FX .
Since U ∈ F∼ ⇔ π−1(U) ∈ FX , we would be done if we could show

f−1(g(U)) = π−1(U)

We again show containment in both directions as follows.

(⊆) Let x ∈ f−1(g(U)). So g([x]) = f(x) ∈ g(U). Since g is bijective (from the
earlier parts of this proof), it follows that [x] ∈ U . Now we have π(x) = [x] ∈
U , and hence x ∈ π−1(U).

(⊇) Let x ∈ π−1(U). So π(x) ∈ U , implying that g(π(x)) ∈ g(U). Now g(π(x)) =
g([x]) = f(x) is in g(U). Thus it follows that x ∈ f−1(g(U)).

Therefore g is a homeomorphism, and (Y, Ff ) ∼= (X/∼, F∼). �

This theorem means that starting with f and using f to define ∼, we get the same quotient
space up to homeomorphism as we would if we had just used f to define the quotient space
directly. Now we want to go the other way. Suppose we start with ∼ and use ∼ to define
f , will we again get the same quotient space with respect to f and ∼? But this is easy to
prove.

Tiny Fact. Let (X,FX ) be a topological space with an equivalence relation ∼. Let
Y = X/∼ and let f : X → Y be the projection map π. Then F∼ = Ff and f is a quotient
map.

Proof. Recall that:

F∼ = {U ⊆ X/∼ st. π−1(U) ∈ FX}
Ff = {U ⊆ Y st. f−1(U) ∈ FX}.

We know that X/∼= Y and f = π. ∴ F∼ = Ff . Also, f = π is onto since it is a projection
map, and by definition F∼ = Ff is a quotient topology. ∴ f is a quotient map. �
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From now on when we talk about quotient spaces we use equivalence relations or quotient
maps interchangeably depending on what’s most convenient.

Lemma. (Important Lemma about Quotients)
Let (X,FX ), (Z,FZ) be topological spaces and let Y be a set. Suppose f : X ։ Y is onto
and let g : (Y, Ff ) → (Z,FZ). Then g is continuous if and only if g ◦ f is continuous.

Note that for any equivalence relation ∼ on X we could replace f by π : X → X/ ∼ to
conclude that g : (X/ ∼, F∼) → (Z,FZ ) is continuous if and only if g ◦ π is continuous.

The following summarizes the relationship between the different maps in the lemma. Note
we don’t have any dotted lines and by definition the diagram commutes.

(X,FX )
f

//

g◦f

��❂
❂❂

❂❂
❂❂

❂❂
❂❂

❂❂
❂❂

❂
(Y, Ff )

g

��✄✄
✄✄
✄✄
✄✄
✄✄
✄✄
✄✄
✄

(Z,FZ)

Proof. (⇒) : Suppose that g is continuous. Since f is a quotient map, f is continuous.
Therefore, g◦f is a composition of continuous functions, and so g◦f is continuous.

(⇐) : Suppose, that g ◦ f is continuous. Let U ∈ FZ . Then (g ◦ f)−1(U) ∈ FX .
Therefore, (g ◦ f)−1(U) = f−1(g−1(U)) ∈ FX .

Recall that Ff = {V ⊆ Y : f−1(V ) ∈ FX}. So, V = g−1(U) ∈ Ff , and hence g is
continuous. �

Example (A Non-Example). Let f : R− {1} → R be given by

f(x) =

{
x2 x < 1
−1
x−1 x > 1

f is continuous and onto (why?). Let g : R → R be given by

g(x) =

{
1 x ≥ 0

−1 x < 0
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Then g is not continuous (why not?). But g ◦ f : R− {1} → R is defined by

(g ◦ f)(x) =
{
−1 x > 1

1 x < 1

and g ◦ f is continuous.

Question: Does this contradict the Important Lemma?

Answer: No! The topology on the domain of g is not the quotient topology with respect
to f , since [0, 1) is not open in R which is the domain of g. But f−1([0, 1)) = (−1, 1) is
open in R. Thus we can’t apply the Important Lemma.

For our next theorem, we would like to say that if we put anologous equivalence relations
on homeomorphic spaces then the quotient spaces will be homeomorphic. For example, we
obtain a torus by gluing up opposite sides of a square, but we should also get a torus if we
glue up opposite sides of a trapezoid in an analogous way. The following theorem tells us
that we do.

Theorem. Let (A,FA) and (B,FB) be topological spaces and f : A→ B be a homeomor-
phism. Let ∼A and ∼B be equivalence relations on A and B, respectively, such that x ∼A x

′

if and only if f(x) ∼B f(x
′).

Then A/∼A
∼= B/∼B.
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Proof. We want to show that there is a function g which makes the following diagram
commute:

A
f

//

πA

��

B

πB

��
A/∼A g

//❴❴❴❴❴❴ B/∼B

Define g : A/∼A→ B/∼B by g ([x]A) = [f(x)]B . To show it’s a homeomorphism:

• Well-defined: Suppose [y]A = [z]A. Then

y ∼A z ⇒ f(y) ∼B f(z) ⇒ [f(y)]B = [f(z)]B

and so g is well-defined.

• 1-to-1: Suppose that [x]A and [y]A are such that g([x]A) = g([y]A). Then

[f(x)]B = [f(y)]B ⇒ f(x) ∼B f(y) ⇒ x ∼A y ⇒ [x]A = [y]A

and so g is 1-to-1.

• Onto: Let [y]B ∈ B/ ∼B. Since f is onto, there is some x ∈ A such that
f(x) = y. Then

g([x]A) = [f(x)]B = [y]B

Hence g is onto.

• Continuous: By the Important Lemma, g is continuous iff g ◦πA is continuous,
since πA is a quotient map. So we just need to show that g ◦πA is continuous. By
the definition of g, g ◦πA = πB ◦ f . Since f is a homeomorphism, it is continuous;
and since πB is a quotient map, f is continuous. So πB ◦ f is continuous. Since
g ◦ πA = πB ◦ f , we know that g ◦ πA is continuous. Thus g is continuous.

• Open: Since f and g are both bijections, f−1 and g−1 are both functions.
Instead of showing that g is open we will show that g−1 is continuous. We again
want to use the Important Lemma to do this. First observe that

g ◦ πA = πB ◦ f
g−1 ◦ (g ◦ πA) ◦ f−1 = g−1 ◦ (πB ◦ f) ◦ f−1

πA ◦ f−1 = g−1 ◦ πB
From here, the argument is eerily similar to the argument for continuity above.

Note that πA is a quotient map and f−1 is a homeomorphism, so both are contin-
uous. As such, πA ◦ f−1 is continuous, and therefore so is g−1 ◦ πB. Since πB is a
quotient map, by the Important Lemma, g−1 is continuous. Therefore, g is open.
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Therefore, g is a homeomorphism. Hurrah! �

10. The Product Topology

For the past several lectures, we’ve been building new topological spaces from old ones by
using equivalence relations to form quotient spaces. Here, we will change directions and
build new topological spaces from old ones by taking products of spaces. To that end, we
wish to define the product of two sets:

Definition. Let X,Y be sets. The product of X and Y is given by:

X × Y ≡ {(x, y) : x ∈ X, y ∈ Y }

Note that a given point in a product X × Y cannot have two different representations as
(x, y). Why not?

This is a topology class, so our intrinsic urge is to find a natural topology for the product
of two topological spaces. While our first instinct might be to take products of open sets
in our original spaces, this approach will give unsatisfactory results:

Example. Consider the sets A = (0, 1)× (0, 1) and B = (1/2, 3/2)× (1/2, 3/2) as subsets
of R × R = R2 with the usual topology. Then A ∪ B in R2 is NOT a product of an open
set in R with an open set in R as we would like. To intuitively see that this is not the case,
see the picture! On the other hand, A ∪B is open in the usual topology on R2.

Although products of open sets will not work because they are not closed under unions,
we can use products of open sets to define a basis.

Definition. Let (X,Fx) and (Y, Fy) be topological spaces. Then the set βX×Y is defined
by:

βX×Y = {A×B : A ∈ Fx, B ∈ Fy}
and define:

FX×Y =

{
⋃

i∈I
Ui| I is some index set, and Ui ∈ βX×Y

}
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In other words, βX×Y is the set of products of an open set in X and an open set in Y , and
FX×Y is the set of unions of elements in βX×Y . The motivation for defining our sets this
way is that we want FX×Y to be a topology on X × Y and for β to be its basis. We will
now verify this claim with the following small fact :

Small Fact. If (X,Fx) and (Y, Fy) are topological spaces, the space (X × Y, FX×Y ) is a
topological space with basis βX×Y .

Proof. We will apply our basis theorem; i.e. we want to show that

(1)
⋃

U∈βX×Y

U = X × Y

(2) Given B1, B2 ∈ βX×Y , for each x ∈ B1 ∩ B2, there exists B3 ∈ BX×Y such that
x ∈ B3 ⊆ B1 ∩B2.

For the first statement, we know that X ∈ Fx and Y ∈ Fy by definition of a topology so
that X × Y ∈ βX×Y . It follows then that because each U ∈ βX×Y is subset of X × Y :

X × Y ⊆
⋃

U∈βX×Y

U ⊆ X × Y

so that X × Y =
⋃
U∈βX×Y

U , as desired.

For the second statement, let B1, B2 ∈ βX×Y and let (x, y) ∈ B1 ∩B2. Then by definition
of βX×Y , there exist U1, U2 ∈ Fx and V1, V2 ∈ Fy such that B1∩B2 = (U1×V1)∩ (U2×V2).
Our aim is to find B3 ∈ βX×Y such that B3 contains (x, y) and B3 ⊆ B1 ∩B2, so define:

B3 = (U1 ∩ U2)× (V1 ∩ V2).
Thus U1, U2 ∈ Fx ⇒ U1 ∩ U2 ∈ Fx by the closure of topologies under finite intersections
and similarly, V1 ∩ V2 ∈ Fy, so B3 ∈ βX×Y . Since (x, y) ∈ (U1 × V1) ∩ (U2 × V2), then
(x, y) ∈ (U1 × V1) and (x, y) ∈ (U2 × V2). Therefore, x ∈ U1, U2 and y ∈ V1, V2, so
x ∈ U1 ∩ U2, and y ∈ V1 ∩ V2. It immediately follows by the definition of the intersection
of sets that:

(x, y) ∈ (U1 ∩ U2)× (V1 ∩ V2) = B3

The only thing left to show is that B3 ⊆ B1 ∩ B2. To that end, let (a, b) ∈ B3. Then
a ∈ U1 ∩ U2 and b ∈ V1 ∩ V2 by definition of B3. It follows that:

a ∈ U1, U2 and b ∈ V1, V2 ⇒ (a, b) ∈ U1×V1 and (a, b) ∈ U2×V2 ⇒ a ∈ (U1×V1)∩(U2×V2).
Therefore, (a, b) ∈ B1 ∩B2 so that B3 ⊆ B1 ∩B2 because (a, b) is an arbitrary element of
B3.

Therefore, βX×Y satisfies the hypotheses of our basis theorem, so the set of unions of
elements of βX×Y , FX×Y , is a topology for X × Y and βX×Y is a basis for the topology
FX×Y . �
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We have successfully devised a topology for product spaces as unions of products of open
sets.

10.1. Examples.

Example. The set S1 × [0, 1] looks like a cylinder! What kinds of sets are open in the
cylinder? For example why is an open disc projected on the face of the cylinder open?

[0,1]

S1

Example. The set S1 × S1 looks like a torus! What kinds of sets are open in the torus?
Similar to the previous example, open discs projected onto the torus surface are examples
of open sets in S1 × S1. In the picture, one copy of S1 is red and one is green; they
determine a torus.

Example. The set S1 × S1 × S1 is a 3-torus.
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A trivial product is a product of a space X with a single point p. The reason we say that
X×{p} is trivial is because it’s homeomorphic to X. So taking the product has not created
anything new.

Not every space is a non-trivial product. For example the sphere S2 is not a non-trivial
product. An intuitive (non-rigorous) justification is that the natural axes of a sphere are
the great circles; however, every pair of distinct great circles intersect twice which makes
it impossible to define a coordinate system on the sphere. Remember points in products
have unique representations as a coordinate pair.

Example: S2 × I looks like a chocolate Easter egg. That is, it’s a thickened sphere.

Example: To get S2×S1 we start with S2×I and we glue the inside sphere to the outside
sphere.

This could be the shape of our universe. How is it different from a 3-dimensional torus?

10.2. The Product Projection Map. Now that we have a product topology, we
want a way to relate the product topology to the topology of the factors. In order to do
so, we will define the projection maps as follows.

Definition. Let (X,Fx) and (Y, Fy) be topological spaces and create X × Y endowed
with the product topology FX×Y . Define πX : (X × Y, FX×Y ) → (X,Fx) and πY : (X ×
Y, FX×Y ) → (Y, Fy) by:

πX((x, y)) = x πY ((x, y)) = y.

The map πX is the projection onto X and πY is the projection onto Y .
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A small fact which we will derive now is that the product projection maps are continuous:

Small Fact. Let (X,FX ) and (Y, FY ) be topological spaces and (X × Y, FX×Y ) be their
product with the induced product topology. Then the projection maps πX and πY onto X
and Y are continuous.

Proof. Suppose O ⊆ X and O ∈ Fx. We see that π−1
X (O) = O × Y ∈ FX×Y . Therefore,

the pre-image of any open set in X under πX is open in X ×Y with the product topology.
A similar argument shows that πY is continuous. �

Recall that the quotient projection map is not necessarily an open map. It turns out that
the product projection map is an open map. Accidentally assuming that the quotient map
is open is a very common mistake that one should be aware of! We will now prove that
the product projection map is open:

Tiny Fact. Let (X,FX ) and (Y, FY ) be topological spaces and (X × Y, FX×Y ) be their
product with the induced product topology. Then the projection maps πX and πY onto X
and Y are open.

Proof. Let O = U × V such that U ∈ Fx and V ∈ Fy and O ∈ βX×Y . Therefore:

πX(O) = U ∈ Fx

Once we know that πX takes basic open sets to open sets, it follows that πX takes any
open set to an open set. �

Now that we have product spaces and have addressed their basic topological properties,
we would like a way to easily find and construct continuous maps to the product space.
To that end we introduce the following:

Lemma (Important Lemma about Products). Let (X,FX ), (Y, FY ) and (A,FA) be topolog-
ical spaces and let (X × Y, FX×Y ) be the product space with the induced product topology.
Suppose f : A→ X and g : A→ Y and define

h : A→ (X × Y ) by h(a) = (f(a), g(a)),

then h is continuous if and only if f, g are continuous.

Proof. (⇒) Suppose h is continuous: then we see that:

f = πX ◦ h g = πY ◦ h

so f, g are continuous because they are compositions of continuous functions. X

(⇐) Suppose that f and g are continuous. We prove that the preimage of every basis
element under h is open. This will show that h is continuous.
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Let U×V ∈ βX×Y . Then U ∈ FX and V ∈ FY . Since f and g are continuous, f−1(U) ∈ FA
and g−1(V ) ∈ FA. Then

h−1(U × V ) = {a ∈ A | h(a) ∈ U × V }
= {a ∈ A | (f(a), g(a)) ∈ U × V }
= {a ∈ A | f(a) ∈ U, g(a) ∈ V }
= f−1(U) ∩ g−1(V )

Then h−1(U × V ) is the intersection of two open sets, hence it is open. Therefore, h is
continuous. �

The following example illustrates how this lemma makes it very easy to define continuous
functions to the product space:

Example. Suppose f : R → R and g : R → R with f(x) = x2 + 3x and g(x) = sin(x).
Then the map h : R → R2 defined by h(x) = (x2 + 3x, sin(x)) is continuous because f, g
are.

10.3. Infinite Products. We would of course like to be able to generalize products to
infinite products. Initially, we may be inclined to define such products as: X1×X2×· · · =
{(x1, x2, ...)|xi ∈ Xi∀i ∈ N}. However, such a definition limits us to countable products, so
we make the following definition.

Definition. ∀j ∈ J , letXj be a set. Define the product
∏
j∈J Xj = {f : J → ⋃

j∈J Xj|f(j) ∈
Xj}. We refer to f(j) as the jth coordinate of the point f .

In case you didn’t notice, this definition is confusing.

Example. Suppose J = {1, 2}. Then
∏
j∈{1,2}Xj = {f : {1, 2} → X1 ∪X2|f(j) ∈ Xj} =

{(f(1), f(2))|f(j) ∈ Xj} = {(x1, x2)|xj ∈ Xj} = X1 x X2. Thus we see that this definition
agrees with our previous definition for finite products.

Example. Consider
∏
j∈R{1, 2}. By definition this is {f : R → {1, 2}|f(j) ∈ {1, 2}, j ∈ R}.

This corresponds to subsets of R, if we think of the pre-image of 1 under f as the elements
in the set and the preimage of 2 under f as the elements not in the set. This product is
denoted by {1, 2}R.

Now we wish to define a topology on products which agrees with our prior definition for a
product of two sets if the indexing set J = {1, 2}. Perhaps the most natural way of doing
this is the following.

Definition. For each j ∈ J , let Xj have topology Fj . The box topology on
∏
j∈J Xj is

given by the basis
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β� = {∏j∈J Uj |Uj ∈ Fj}.
F� = {unions of elements of β�}.

While this topology makes sense for finite index sets, it does not work so well in general
(as we will see in the proof of the Important Lemma below). But first we define another
topology on infinite products.

Definition. For each j ∈ J , let Xj have topology Fj . The product topology on
∏
j∈J Xj

is given by the basis βΠ = {∏j∈J Uj |Uj = Xj for all but finitely many j, Uj ∈ Fj}.

Remarks:

(1) βΠ and β� both agree with the product topology for X1 ×X2.

(2) βΠ ⊆ β�

(3) Both are bases for topologies on the product.

(4) Unless explicitly stated otherwise, all products will be assumed to have the product
topology.

Definition. Define the projection map πj :
∏
j∈J Xj → Xj by πj(f) = f(j). So the jth

projection map takes a point to its jth coordinate.

Lemma. For all j ∈ J , let (Xj , Fj) be a topological space. Then

πj0 :
∏

j∈J
Xj → Xj → Xj0

is continuous for all j ∈ J .

Proof. Let j0 ∈ J and consider U ∈ Fj0 . We wish to show that π−1
j0

(U) ∈ Fπ. Note

that π−1
j0

(U) = {f ∈ ∏
j∈J Xj |πj0(f) ∈ U} = {f ∈ ∏

j∈J Xj |f(j0) ∈ U} = {f ∈∏
j∈J Xj |f(j0) ∈ U, ∀j 6= j0, f(j) ∈ Xj} =

∏
j∈J Uj such that Uj0 = U and ∀j 6= j0, Uj =

Xj .

It then follows from the definition of the product topology that π−1
j0

(U) ∈ βπ ⊆ Fπ. So the
projection map is continuous. �

The following Lemma is a generalization of the Important Lemma we had for continuous
functions into products of two spaces. Does anyone remember what that lemma said?

Lemma (Important Lemma for Infinite Products). Let (Y, FY ) be a topological space, and
for all j ∈ J let (Xj , Fj) be a topological space and gj : Y → Xj . Define h : Y → ∏

j∈J Xj

to be h(y) = f ∈ ∏
j∈J Xj where f is defined by ∀j ∈ J, f(j) = gj(y). (i.e., for each j, the

jth coordinate of h(y) is gj(y).) Then h is continuous if and only if every gj is continuous.
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Proof. (⇒) Suppose h is continuous and let j ∈ J . Then πj ◦ h(y) = gj(y). Thus gj is
the composition of continuous functions and must itself be continuous.

(⇐) Suppose that gj is continuous for all j ∈ J . Let U ∈ βπ. We wish to show that
h−1(U) ∈ FY .

Note that h−1(U) = {y ∈ Y |h(x) ∈ U}. Since U is a basis element of the product topology,
U =

∏
j∈J Uj where Uj ∈ Fj and Uj = Xj for all but at most finitely many j.

h−1(U) = {y ∈ Y |h(y) ∈
∏

j∈J
Uj} = {y ∈ Y |gj(y) ∈ Uj , ∀j ∈ J}

= {y ∈ Y |y ∈ g−1
j (Uj), ∀j ∈ J} =

⋂

j∈J
g−1(Uj)

Since gj is continuous for all j, g
−1
j (Uj) is open in Y for all j. Since Uj = Xj for all but at

most finitely many j, g−1
j (Uj) = Y for all but at most finitely many j. It follows that the

intersection
⋂
j∈J g

−1(Uj) is a finite intersection of open sets. Thus, h−1(U) ∈ FY so h is
continuous, completing the proof. �

Remark: Observe that this proof would not have worked if
∏
j∈J Xj had the box topology

rather than the product topology. This illustrates why the product topology is better than
the box topology.

Distinguishing Spaces

Definition. A topological property (or ‘top. prop.’) is a property of a topological
space that is preserved by homeomorphisms.

The purpose of a topological property is to prove that two spaces are different. In partic-
ular, if one space has the property and the other one doesn’t, then the spaces cannot be
homeomorphic.

List of Topological Properties thus Far

(1) Cardinality of X

(2) Cardinality of Fx (Why?)

(3) Metrizability (we proved this in the homework)

(4) Discreteness (we’ll prove this below)

(5) Indiscreteness (we’ll prove this below)
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Lemma. Let (X,FX ) and (Y, FY ) be topological spaces and f : X → Y be an open bijection.
If FX is the discrete topology, then FY is the discrete topology.

Note that we don’t even need f to be continuous to reach this conclusion.

Proof. Let y ∈ Y . Since f is surjective, there exists x ∈ X such that f(x) = y. Since
{x} ∈ FX and f open, f({x}) ∈ FY . Thus all singletons in Y are elements of FY and all
sets in Y are unions of singletons and hence elements of FY , so every set is an open set
and FY is the discrete topology. �

Lemma. Let (X,FX ) and (Y, FY ) be topological spaces and f : X → Y be a continuous
bijection. If FX is the indiscrete topology, then FY is the indiscrete topology.

Proof. Let U ∈ FY . WTS U = Y or U = ∅. Since f is continuous, f−1(U) ∈ FX .
Therefore f−1(U) = X or ∅. Suppose f−1(U) = X. Then U = f(f−1(U)) = f(X) = Y
since f surjective. Suppose f−1(U) = ∅. Then U = ∅, again because f is onto. Therefore
FY is the indiscrete topology. �

Unfortunately, even with these five lovely Topological Properties, we can’t yet distinguish
a circle from a line. Clearly there is more work to do.

Example (a non-example). Distance is not a topological property. A big circle is homeo-
morphic to a little circle.

What is the definition of compact for metric spaces? Recall, that the continuous image
of a compact set is compact. The definition and proof of this result are the same for
topological spaces. So compactness is a topological property. We won’t go over compactness
in topological spaces, because it is quite similar to compactness in metric spaces. Feel free
to use results in the book about compact spaces. In particular, you may want to use the
following three results:

Theorem. A closed subset of a compact space is compact.

Theorem (Bolzano-Weierstrass). Let (X,FX ) be compact, and S be an infinite subset of
X. Then X has a point p, such that every open set containing p contains infinitely many
points of S.

Theorem (Tychonoff Theorem). The product of finitely many compact spaces is compact.

Note this is actually true for any finite or infinite collection of compact spaces.

11. Hausdorffness

Definition. Let (X,FX ) be a topological space. We say that X is Hausdorff if ∀ p, q ∈ X
such that p 6= q, ∃ disjoint sets U, V ∈ FX such that p ∈ U , q ∈ V .

Example. Metric spaces are Hausdorff. Why?
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Example (a non-example). Any space containing at least two points with the indiscrete
topology is not Hausdorff. Why not?

Hausdorff is important because any space you would ever want to live in or work in is
Hausdorff.

Note: on HW 4 you proved that the continuous image of a Hausdorff space need not be
Hausdorff. Here is another Example.

Example. Define f : (R, discrete) → (R, indiscrete) by the identity map.

This is continuous because the domain has the discrete topology, but the domain is Haus-
dorff while the range is not.

Small Fact. Suppose f : (X,FX ) → (Y, FY ) is a homeomorphism and (X,FX ) is Haus-
dorff. Then (Y, FY ) is also Hausdorff.

Proof. Let p 6= q ∈ Y . Because f is a bijection, f−1(p) and f−1(q) are defined and are
distinct points in X. Since X is Hausdorff, ∃ U, V ∈ FX such that U ∩ V = ∅, f−1(p) ∈ U ,
f−1(q) ∈ V .

Consider f(U) and f(V ). Since f is a homeomorphism and, thus, open, f(U) and f(V )
are open. Then, because f is a bijection, we have p ∈ f(U), q ∈ f(V ), and f(U)∩ f(V ) =
∅. Hence indeed Y is Hausdorff. �

The relationship between Compact and Hausdorff. ♥
Hausdorffness and compactness are like two people in love. When two people love each
other, they can do much more together than either one can alone.

Theorem. Let (X,FX ) be Hausdorff. Let A ⊆ X be compact. Then A is closed.

Proof. (Compare the following proof to the proof from 131 that compact subsets of
metric spaces are closed. That is, we are going to show that we don’t need a metric, just
Hausdorffness, for compact subsets to be closed.)

Rather than show A is closed, we will show X −A is open.

Let p ∈ X−A. We want to show ∃ U ∈ FX such that p ∈ U ⊆ X−A. Let a ∈ A. Because
X is Hausdorff, ∃ Ua, Va ∈ FX such that p ∈ Ua, a ∈ Va, Ua ∩ Va = ∅.
Consider {Va|a ∈ A}. This is an open cover of A because each Va is open and ∀a ∈ A,
a ∈ Va. So, because A is compact, {Va|a ∈ A} has a finite subcover {Va1 , Va2 , ..., Van}.
Let U =

⋂n
i=1 Uai . Then U ∈ FX since it is a finite intersection of elements of FX and

p ∈ U since p ∈ Uai ∀ i = 1, 2, ..., n.

Claim: U ⊆ X −A
Proof. ∀ i = 1, 2, ... n, we have Uai ∩Vai = ∅. Also, A ⊆ ⋃n

i=1 Vai and U ∩A ⊆ U ∩⋃n
i=1 Vai .
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However, U∩⋃n
i=1 Vai = ∅ because if ∃ x ∈ U∩⋃n

i=1 Vai , then ∃ io such that x ∈ Vaio ∩Uaio .
But, by definition, Vaio ∩ Uaio = ∅. So no such x exists. Thus,

U ∩A ⊆ U ∩
n⋃

i=1

Vai = ∅,

implying that U ∩A = ∅. So, because U ⊆ X but U ∩A = ∅, U ⊆ X −A

Thus, we have found U ∈ FX such that p ∈ U , U ⊆ X − A. Thus, X − A is open. Thus,
A is closed. �

Corollary. In any Hausdorff space, (finite sets of) points are closed sets.

Proof. Let p ∈ (X,FX ) and let (X,FX ) be Hausdorff. Let {Ui|i ∈ I} be an open cover
of {p}. Then ∃ io ∈ I such that p ∈ Uio . Thus {Uio} is a finite subcover. Hence, {p} is
compact. Thus, by the Theorem above, {p} is closed. �

The following is a top prop like Hausdorff but stronger.

Definition. Let (X,Fx) be a topological space. We say X is normal if for every pair of
disjoint closed sets A,B ⊆ X, there exist disjoint open sets U, V ⊆ X such that A ⊆ U
and B ⊆ V .

On Homework 2, you proved that metric spaces are normal.

Example: A space that is Hausdorff but not normal. Consider R with a topology F
defined by a basis of all sets of the form (a, b) plus all sets of the form (a, b) ∩ Q. This is
known as the rational topology, and it is finer than the usual topology. As an exercise,
you can prove that that this collection of sets really form the basis of a topology. (Use the
Basis Lemma.)

(R, F ) is Hausdorff because F contains the usual topology on R, which is Hausdorff. Next,
we will show that (R, F ) is not normal. To see why, let A = R − Q. Then A is closed,
because Q ∈ F . Let B = {47}. Then B is closed because its complement is open. Suppose
there exist U, V ∈ F such that A ⊆ U, and B ⊆ V . Then there exists ε > 0 such that
(47 − ε, 47 + ε) ∩ Q ⊆ V . Let p ∈ (47 − ε, 47 + ε) such that p 6∈ Q. Then p ∈ U because
p 6∈ Q. So, there exists δ > 0 such that (p− δ, p + δ) ⊆ U .

47
( )

p
( )
x

47-ε 47+εy
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Now, let y = max{p − δ, 47 − ǫ}. Then there is a rational x such that y < x < p. Now we
have

p− δ ≤ y < x < p < p+ δ

So x ∈ (p − δ, p + δ) ⊆ U . Also we have

47− ǫ ≤ y < x < p < 47 + ǫ

and x ∈ Q. Thus x ∈ (47 − ǫ, 47 + ǫ) ∩ Q ⊆ V . But then x ∈ U ∩ V , and so U ∩ V 6= ∅.
This proves that (R, F ) is not a normal space.

Observations from this example:

1) A space can be Hausdorff but not normal.

2) Making a topology larger does not change Hausdorff but might change normal because
more sets become closed.

Lemma. If (X,Fx) is Hausdorff and compact, then X is normal.

Hausdorff ♥ compact forever!!

We begin with the comic book proof.

A

B

aStep 1 Step 2

Step 3 Step 4

a

∀b

U = ∩Vba

finite open cover
V = ∪Vba   

finite

open cover

V= ∩ Va

U= ∪ Ua

V ‘sa   

Proof. Let A and B be disjoint closed subsets of X. Then A and B are compact because
X is compact, by the theorem that closed sets in a compact space are compact. Let a ∈ A.
For every b ∈ B, there exist open sets Ub and Vb such that a ∈ Ub and b ∈ Vb, and
Ub ∩ Vb = ∅. Then {Vb | b ∈ B} is an open cover of B. Since B is compact, we can choose
a finite subcover {Vb1 , . . . , Vbn}. Let Ua = ∩ni=1Ubi . Now a ∈ Ua ∈ Fx. Let Va = ∪ni=1Vbi .
Then B ⊆ Va ∈ Fx.

We claim that Ua ∩ Va = ∅ for all a ∈ A. To see why, note that (∩ni=1Ubi) ∩ (∪ni=1Vbi) = ∅
because for all i, Ubi ∩ Vbi = ∅.
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Now, {Ua | a ∈ A} is an open cover of A. Since A is compact, this cover has a finite
subcover {Ua1 , . . . , Uam}. Now, V = ∩mi=1Vai is open and B ⊆ V . For all i = 1, . . . ,m,
Uai ∩ (∩mi=1Vai) = ∅ because for all i = 1, . . . ,m, Uai ∩ Vai = ∅.
Let U = ∪mi=1Uai ∈ Fx. Then A ⊆ U and U ∩ V = ∅ because Uai ∩ Vai = ∅ for all i.

Therefore, X is normal. �

Theorem. Let (X,FX ) be a compact Hausdorff topological space. If (Y, FY ) is a topolog-
ical space and f : X → Y is continuous, onto, and closed, then (Y, FY ) is compact and
Hausdorff.

Hausdorff ♥ compact forever!!

Proof. I will prove this because the proof is not straight forward. Since f is continuous
and onto and X is compact, Y is compact.

X Y

p

q

a

b

f  ({p})
-1

f  ({q})
-1

U

V

A=X-U

B=X-V

Y-f(A)

Y-f(B)

To prove Hausdorff: Let p, q ∈ Y such that p 6= q. As f is onto, ∃ a, b ∈ X such that
f(a) = p and f(b) = q. Picking disjoint open sets around a and b won’t work because f
isn’t one to one OR OPEN. As X is Hausdorff, {a} and {b} are closed. As f is closed,
f({a}) = {p} and f({b}) = {q} are closed. Therefore, as f is continuous, f−1({p}) and
f−1({q}) are closed, and are disjoint. Note we don’t need one to one to see that these sets
are disjoint.

AsX is both compact and Hausdorff, it is also normal by the above Lemma. So ∃ U, V ∈ FX
such that f−1({p}) ⊆ U , f−1({q}) ⊆ V , and U ∩ V = ∅. Note that f(U) and f(V ) are
not necessarily either disjoint or open. So we consider the complements of U and V . As U
and V are open, A = U c and B = V c are closed. As f is closed, f(A) and f(B) are also
closed, and hence f(A)c and f(B)c are open.

We prove as follows that f(A)c and f(B)c contain p and q respectively. Suppose that
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p ∈ f(A). Then for some x ∈ A, f(x) = p. But then x ∈ f−1({p}) ⊆ U = Ac. So
x ∈ A∩Ac, which is a contradiction. So p ∈ f(A)c, and by a similar argument, q ∈ f(B)c.

Now suppose that y ∈ f(A)c ∩ f(B)c. As f is onto, there exists some z ∈ X such that
f(z) = y. As y /∈ f(A), z /∈ A, so z ∈ Ac = U . Similarly, as y /∈ f(B), z ∈ V . But then
z ∈ U ∩ V = ∅. This is a contradiction, so no such y exists, and hence f(A)c ∩ f(B)c = ∅.

So f(A)c and f(B)c are disjoint open sets with p ∈ f(A)c and q ∈ f(B)c. As such
open sets exist for all p, q ∈ Y , Y is Hausdorff. Therefore Y is compact and Hausdorff, as
desired. �

Lemma (Important Lemma about Compact and Hausdorff). Let f : (X,FX ) → (Y, FY ) be
continuous. Let X be compact, and Y be Hausdorff. Then f is a homeomorphism if and
only if it is a bijection.

Proof. (⇒) Since f is a homeomorphism, f is a bijection.

(⇐) Suppose f is a continuous bijection. We want to show that f is open. Since f is a
bijection, this is equivalent to showing that f is closed by HW 3.

Let A ⊆ X be closed. By a theorem in Analysis a closed subset of a compact set is compact.
The proof for topological spaces is the same as for metric spaces. So we accept it without
proof. Since X is compact, it follows that A is compact. Since f is continuous, f(A) is
compact. We previously proved that a compact subset of a Hausdorff space is close. Hence
f(A) is closed. Thus, f is closed, and, thus, open.

Thus, f is an open, continuous bijection. It follows that f is a homeomorphism. Hence, f
is a homeomorphism if and only if it is a bijection. �

12. Connected Components

What is the definition of connected for metric spaces? What does it mean to say that U
and V “form a separation” of X?

Recall the the continuous image of a connected space is connected. The definition and
proof of this result are the same for topological spaces. So connectedness is a topological
property. Like with compactness, we skip this section because it’s too redundant with
Analysis. Here are the most important results about connectedness from Analysis:

• A subset R is connected off it’s an interval

• The continuous image of a connected space is connected. So connectedness is a
top prop.

• The Flower Lemma (what does it say?)

Feel free to use the results about connectedness in the text together with results from
Analysis, but you must state whatever results you’re using.
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Definition. Let (X,FX ) be a topological space and let p ∈ X. Let {Cj | j ∈ J} be the set
of all connected subspaces of X containing p. Then

⋃
j∈J Cj is said to be the connected

component, Cp, of p.

And now, some tiny facts about connected components.

Tiny Fact. Let (X,FX ) be a topological space. Then,

(1) ∀p ∈ X, Cp is connected.

(2) If Cp and Cq are connected components, then either Cp ∩ Cq = ∅ or Cp = Cq.
(That is, connected components partition a space.)

Proof. 1) p ∈ ⋂
j∈J Cj , so Cp =

⋃
j∈J Cj is connected by the Flower Lemma.

2) Suppose Cp ∩ Cq 6= ∅ and let x ∈ Cp ∩ Cq. Then Cp ∪ Cq is connected by the Flower
Lemma.

p ∈ Cp ∪ Cq, so Cp ∪ Cq ∈ {Cj | j ∈ J}. Also, Cp ∪ Cq ⊆ Cp, since Cp =
⋃
j∈J Cj . So,

Cq ⊆ Cp. Similarly, Cp ⊆ Cq. Thus Cp = Cq, and hence X is partitioned into its connected
components. �

Example. Let X = R2 with the dictionary topology. Connected components are vertical
lines. (Proof is an exercise.) Define x ∼ y (x, y ∈ R2) if x and y are in the same connected
component. Then X/ ∼ = R with the discrete topology.

X X/~

Connectedness is not always intuitive, though. Here’s an example showing this.

Define the Comb, the Flea, and the space X as follows. Let Y0 = [0, 1] × {0}
and ∀n ∈ N, Yn = { 1

n
} × [0, 1].

Comb = Y =
∞⋃

n=0

Yn. Flea= {(0, 1)}.
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X =Flea ∪ Comb with the subspace topology from R2. Note, when we studied the comb
metric in the beginning of the semester, the topology was not the same as the subspace
topology from R2.

0 1

...

(1/n, 1)

Claim: X is connected. This is surprising because the flea can’t get to the comb.

Proof. First, we see that the Comb is connected as follows. ∀n ∈ {0}∪N, Yn is connected
because Yn ∼= [0, 1]. Also, ∀n ∈ N, Y0 ∩ Yn 6= ∅ (because ( 1

n
, 0) is in both), so Y0 ∪ Yn is

connected.

Now
⋂

n∈N
Y0 ∪ Yn 6= ∅, so

∞⋃

n=0

Y0 ∪ Yn =
∞⋃

n=0

Yn and so the Comb is connected by the Flower

Lemma.

Now we want to show that X is connected. Suppose U , V form a separation of X. Since
the Comb is connected, WLOG we can assume that Comb ⊆ U . Then it must be that Flea
⊆ V because U , V is a separation. Hence V is open in X, so ∃ε > 0 s.t. Bε((0, 1);X) ⊆ V .
Let n ∈ N s.t. n > 1

ε
. Then d(( 1

n
, 1), (0, 1)) = 1

n
< ε ⇒ ( 1

n
, 1) ∈ Bε((0, 1);X) ⊆ V .

Observe that since Yn = { 1
n
} × [0, 1], the point ( 1

n
, 1) ∈ Yn. Thus, ( 1

n
, 1) ∈ V ∩ Yn ⊆

V ∩Y ⊆ V ∩U ⇒ V ∩U 6= ∅. But this is a contradiction, since we assumed that U , V was
a separation of X. Thus, X is connected. �

Now we have a concept that corresponds more to our intuition about what connected
should mean.
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13. Path-Connectedness

Definition. Let (X,FX ) be a topological space and let f : [0, 1] → X be continuous.
Then we say that f is a path from f(0) to f(1) (Note: it is handy to think of t ∈ [0, 1] as
time).

Definition. Let (X,FX ) be a topological space. If ∀p, q ∈ X, there exists a path in X
from p to q then we say that X is path connected.

Example. Rn is path connected:

Let a, b ∈ Rn be given. Let f : I → Rn be f(t) = (1 − t)a + bt. Then f(0) = a, and
f(1) = b. f can be shown to be continuous.

Some remarks:

(1) The above path is important and will arise frequently in the rest of the course.

(2) Connected is a negative definition and path connected is a positive definitionTo
prove connectedness, we are trying to show that a separation doesn’t exist, so it
is easiest to do connectedness proofs by contradiction or use the Flower Lemma.

(3) To prove path connectedness, we are trying to show that a path exists. So path
connectedness proofs are more easily done constructively.

(4) In general, it is easier to prove that a space is disconnected than to prove that it
is not path connected.

(5) In general, it is easier to prove that a space is path connected than to prove that
it is connected.

Theorem. If (X,FX ) is path connected, then (X,FX ) is connected.

Proof. Suppose there exists a separation U , V of X. Since U , V is a separation of X,
U 6= ∅, V 6= ∅. Let p ∈ U , q ∈ V be given. Since X is path connected, ∃ a path f from
p to q. Since paths are continuous by definition, f is continuous, so f−1(U), f−1(V ) are
open in [0, 1].

Claim 1: f−1(U) ∪ f−1(V ) = [0, 1].
Proof of Claim 1: Let x ∈ [0, 1] be given. Then f(x) ∈ X = U ∪ V ⇒ f(x) ∈ U
or f(x) ∈ V ⇒ x ∈ f−1(U) or x ∈ f−1(V ) ⇒ x ∈ f−1(U) ∪ f−1(V ). Thus, [0, 1] ⊆
f−1(U) ∪ f−1(V ) ⇒ [0, 1] = f−1(U) ∪ f−1(V ) (since f−1(U), f−1(V ) ⊆ [0, 1]).

Claim 2: f−1(U) ∩ f−1(V ) = ∅.
proof of Claim 2: Suppose ∃x ∈ f−1(U) ∩ f−1(V ). Then x ∈ f−1(U) ⇒ f(x) ∈ U , and
x ∈ f−1(V ) ⇒ f(x) ∈ V , so f(x) ∈ U ∩ V , which is impossible since we are assuming that
U and V are a separation of X. Thus, f−1(U) ∩ f−1(V ) = ∅.
Observe that since f is a path from p to q, f(0) = p and f(1) = q, so 0 ∈ f−1(U), 1 ∈
f−1(V ) so f−1(U) and f−1(V ) are non-empty and proper. Thus, since f−1(U)∩f−1(V ) = ∅
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and f−1(U)∪ f−1(V ) = [0, 1], f−1(U) and f−1(V ) form a separation of [0, 1]. But this is a
contradiction, since we know from Math 131 that [0, 1] is connected. Thus, (X,FX ) must
be connected. �

Recall that the flea and comb space is connected.

Theorem. Let X denote the flea and comb space. Then X is not path connected.

Proof. We want to show that ∄ a path from the flea to the comb.

Suppose ∃ a path f from the flea to a point on the comb. Let p = flea. Then f−1({p})
is not empty because f(0) = p by the definition of f . Similarly, by the definition of f ,
f(1) 6= p, so f−1({p}) is a non-empty proper subset of I. Observe that since {p} is closed
in X and f is continuous, f−1({p}) is closed in I.

We’d like to show that f−1({p}) is open in I, since then it would be a non-empty proper
clopen subset of I, giving us a contradiction. Let x ∈ f−1({p}). We will prove that there
is an open interval U such that x ∈ U ⊆ f−1({p}).

0 1

...

f(y)

r

A B

[ )
y

( )
fx

Yn

f  (B  (p;X))-1

½

B  (x;[0,1])ε

Outline of rest of proof:

(1) f−1(B 1
2
(p;X)) is open and contains x.

(2) Hence it contains an open interval Bε(x; [0, 1]). WTS Bε(x; [0, 1]) ⊆ f−1({p}).
(3) Suppose some point y ∈ Bε(x; [0, 1]) is not in f

−1({p}).
(4) Then f(y) ∈ Yn for some n.

(5) Now separate f(Bε(x; [0, 1])) by a vertical line at a irrational x value so that one
open set contains p and the other contains f(y).

(6) But f(Bε(x; [0, 1])) is connected since f is continuous and intervals are connected.
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(7) Thus Bε(x; [0, 1]) ⊆ f−1(p).

Observe that B 1
2
(p;X) is open in X. Since f is a path, f is continuous, so f−1(B 1

2
(p;X))

is open in [0, 1]. Since x ∈ f−1({p}), f(x) = p ∈ B 1
2
(p;X). Thus x ∈ f−1(B 1

2
(p;X)). Now,

since f−1(B 1
2
(p;X)) is open in [0, 1], ∃ε > 0 s.t. Bε(x; [0, 1]) ⊆ f−1(B 1

2
(p;X)).

Let y ∈ Bε(x; [0, 1]). We will show that f(y) = p, and hence Bε(x; [0, 1]) will be the open
interval U such that x ∈ U ⊆ f−1({p}). This will prove that f−1({p}) is open.
Suppose f(y) 6= p. Since y ∈ Bε(x; [0, 1]), y ∈ f−1(B 1

2
(p;X)), so f(y) ∈ B 1

2
(p;X) (so

d(f(y), p) < 1
2 ). For each q ∈ Y0 = [0, 1] × {0}, we know that d(p, q) ≥ 1. Hence

q 6∈ B 1
2
(p;X). Thus, f(y) 6∈ Y0. Thus since f(y) 6= p, ∃n ∈ N s.t. f(y) ∈ Yn.

Let r ∈ R − Q such that 0 < r < 1
n
. Let A = {(s, t) ∈ f (Bε(x; [0, 1])) |s < r} and

B = {(s, t) ∈ f (Bε(x; [0, 1])) |s > r}.
Claim: A and B is a separation of f (Bε(x; [0, 1])).

Note that A ∩ B = ∅ by definition. We know that f(y) ∈ B, and p ∈ A, so neither
set is empty. Next, we want to show that A ∪ B = f (Bε(y; [0, 1])). Certainly A ∪ B ⊆
f (Bε(x; [0, 1])). Now let (s, t) ∈ f (Bε(x; [0, 1])). Since f (Bε(x; [0, 1])) ⊆ B 1

2
(p;X), (s, t) 6∈

Y0. Thus s =
1
m

for somem ∈ N. Then s 6= r, so (s, t) ∈ A∪B and A∪B = f (Bε(x; [0, 1])).

Next we want to show that A is open in f(Bε(x; [0, 1])). We know that {(s, t)|s < r} is
open in R2. Hence, since X has the subspace topology A = {(s, t)|s < r} ∩ f (Bε(x; [0, 1]))
is open in f (Bε(x; [0, 1])). Similarly, B is open in f (Bε(x; [0, 1])).

We have shown that A and B is a separation of f (Bε(x; [0, 1])).
√

This is a contradiction, since Bε(x; [0, 1]) is connected and f is continuous. We conclude
that f(y) = p, for all y ∈ Bε(x; [0, 1]).

Therefore Bε(x; [0, 1]) ⊆ f−1({p}), so f−1({p}) is open. So f−1({p}) is a clopen, non-
empty, proper subset of [0, 1]. This is a contradiction, so we conclude that there does not
exist a path in X from p to a point in the comb. �

The point of this whole example is to show that path connected is stronger than connected.
We knew already that path connected implies connected, and now we see that connected
doesn’t necessarily imply path connected.

Lemma. The continuous image of a path connected set is path connected.

Proof. Let X be path connected, g : X → Y be continuous, let p and q be points in
g(X). Then there are points r and s in X such that g(r) = p and g(s) = q. Since X is
path connected, there is a path f : [0, 1] → X such that f(0) = r and f(1) = s. Now
g ◦f : [0, 1] → Y is a path from g(f(0)) = p to g(f(1)) = q. Hence f(X) is path connected.
�
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13.1. Combining paths.

Definition. Let f and g be paths in a topological space (X,FX ) such that f(1) = g(0).
Then we define f ∗ g : I → X by

(f ∗ g)(t) =
{
f(2t) 0 ≤ t ≤ 1

2

g(2t − 1) 1
2 ≤ t ≤ 1

Intuitively what’s happening is that we’re connecting two paths while speeding things up,
creating a new single path parametrized from 0 to 1.

f

g

Small Fact. f ∗ g is a path from f(0) to g(1).

Proof. By the Pasting Lemma2, since [0, 12 ] and [12 , 1] are closed subsets under [0, 1], and

f(2(12 )) = f(1) = g(0) = g(2(12 ) − 1), f ∗ g is continuous. So f ∗ g is a path. Since
(f ∗ g)(0) = f(0) and (f ∗ g)(1) = g(1), then f ∗ g is a path from f(0) to f(1). �

This definition also allows us to create an analogue to the flower lemma.

Theorem (Flower Lemma for Path Connected Sets). Let X =
⋃
i∈J Yi such that ∀i ∈ J ,

Yi is path connected, and Yi ∩ Yi0 6= ∅. Then X is path connected.

Proof. Let a, b ∈ X. If ∃j ∈ J such that a, b ∈ Yj, then there exists a path from a to
b in Yj ⊆ X. So without loss of generality, suppose that a ∈ Yj, b ∈ Yk, and k 6= j. Let
x ∈ Yi0 ∩ Yj and y ∈ Yi0 ∩ Yk. Then there exists a path f from a to x in Yj , a path h from
x to y in Yi0 , and a path g from y to b in Yk. So (f ∗ h) ∗ g is a path in X from a to b, and
we’re done. (Note that we need parentheses in (f ∗h) ∗ g, since otherwise it’s not defined.)
�

Corollary. The product of path connected spaces is path connected.

Proof. Let x ∈ X. Then Y0 = {x} × Y ∼= Y is path connected. Also, for each j ∈ Y , we
know that Yj = X × {j} ∼= X is path connected. Since Yj ∩ Yo 6= ∅ for each j ∈ Y , by the
Flower Lemma for Path Connected Sets, X × Y is path connected. �

2HW3 #1, which states that if we have two continuous functions with closed sets as domains, and they

agree over the intersection of these domains, then the combined function is continuous
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Definition. Let (X,FX ) be a topological space, and p ∈ X. Let {Cj |j ∈ J} be the set
of all path connected subspaces of X containing p. Then

⋃
j∈J Cj is said to be the path

connected component Cp.

Some tiny facts about path connected components:

Let (X,FX ) be a topological space. Then

(1) ∀p ∈ X,Cp is path connected

(2) If Cp, Cq are path connected components, then either Cp ∩ Cq = ∅, or Cp = Cq.
In other words, path connected components partition the set.

We’ll omit this proof, as it is identical to the one we did for connected components.

14. Homotopies

Now we start the algebraic/geometric part of the course, which you will see has a substan-
tially different flavor from the previous parts of the course

Definition. Let f be a path in (X,FX ), and define f̄ : I → X by f̄(t) = f(1− t).

A few remarks:

(1) f̄ is a path, because it is a composition of continuous functions.

(2) f̄ is a path from f(1) to f(0).

(3) ∗ is a “multiplication” of paths, and f̄ seems like an inverse path. But f ∗ f̄ 6=
the “identity”. Even so, this gives us the idea of forming a group with paths as
elements. But we aren’t quite ready to do this.

Definition. Let (X,FX ) be a topological space, and a ∈ X. We define ea : I → X by
ea(t) = a for all t ∈ I.

ea is the constant path at a. We might want f ∗ f̄ = ea. But this isn’t true.

f

f

Also ea ∗ f 6= f since ea ∗ f hangs out at a for half a minute, then does f at twice the usual
speed.
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So we can’t just make a group out of paths. Instead we consider deformations of paths.
Deformations seem good because we have the intuition that if one space can be deformed
to another then they should be equivalent. We need to formalize what we mean by “de-
forming” one path to another. Intuitively it should mean that there is a continuous way
to change one path into another.

We start with a general notion of deforming continuous functions. We will return to paths
later.

Definition. Let (X,FX ) and (Y, FY ) be top spaces, and let f0 : X → Y and f1 : X → Y
be continuous. Then we say that f0 is homotopic to f1 if there exists a continuous
function F : X × I → Y such that F (x, 0) = f0(x), and F (x, 1) = f1(x). We say that F is
a homotopy from f0 to f1, and we write f0 ≃ f1.

This is the most important concept for the rest of the course. The idea is that we can
deform one function to the other over time. Note that x is the variable of the function and
t is the time variable for the homotopy. From now on when we have paths, we’ll use the
variable s for the path.

It is useful to recall that if a and b are points in Rn, then the straight line path from a to
b is given by f(s) = sb+ (1− s)a.

Example. Let X = I and Y = R2. Define f0 : I → R2 by f0(s) = (s, 0), f1 : I → R2 by
f1(s) = (s, s2), and F : I × I → R2 by F (s, t) = t(s, s2) + (1− t)(s, 0).

Observe that F is continuous, since it’s a composition of continuous functions. Note also
that F (s, 0) = (s, 0) = f0(s) and F (s, 1) = (s, s2) = f1(s). Thus F is a homotopy from f0
to f1.

The homotopy in the above example is called the straight line homotopy. We can define a
straight line homotopy for any pair f0 and f1 of continuous functions from a space X to
Rn, by F (x, t) = tf1(x) + (1 − t)f0(x). However, the straight line homotopy only makes
sense in Rn or a convex subspace.
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To illustrate homotopies, consider a couple of pictures of functions from a circle to R2. We
can use the straight line homotopy to take one to the other, so f0 and f1 are homotopic.

f
0 f

1

Note that the images of homotopic functions need not be homeomorphic. For example, the
following functions are homotopic by the straight line homotopy.

f
0

f
2

14.1. Drawing Homotopies. We find it useful to express a homotopy with a picture.
We do this by drawing X as an interval so that the domain of F is drawn as a square. The
X axis is horizontal, and the I axis is vertical. Then the bottom of the square represents
X ×{0} hence when F is restricted to the bottom of the square we get f0. Similarly, when
F is restricted to the top of the square we get f1. Thus we have the following diagram
representing the homotopy.

t=0 c

c

f (s)

F(c,t)
F

f1

1

f (1)1

f (0)1
f (1)0

f (s)0

f (0)0f 0

F(c,t)

t=1

Note that the image of a vertical segment at c in the square is F (c, t) which is the path
taken from f0(c) to f1(c).
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A few remarks.

(1) Suppose Y is not path connected and f0(x) and f1(x) are in different path com-
ponents. Then there does not exist a homotopy from f0 to f1. Why?

F(0,t)

f1

f0

f1

f0

If f0 and f1 were homotopic, then F (0, t) would be a path from f0(0) to f1(0).
But f0 and f1 are in different path components.

(2) If Y is path connected and f0 and f1 are paths in Y , then f0 ≃ f1. That is any
pair of paths is homotopic. Homotop (the verb!) f0 to its initial point, move it to
the initial point of f1 and then stretch it back out into f1.)

f0

f1 f1 f1 f1

f0

f

More formally, we prove this as follows.

Proof: Define G : I×I → Y by G(s, t) = f0(t ·0+(1− t)s). Observe that G is continuous,
and G(s, 0) = f0(s) and G(s, 1) = f0(0). So G homotops f0 to its initial point.

Let f : I → Y be a path from f0(0) to f1(0).

Now define H : I × I → Y by H(s, t) = f1(ts+ (1 − t) · 0). Observe that H is continuous
and H(s, 0) = f1(0) and H(s, 1) = f1(s). So H homotops f1(0) to f1.
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Finally, define F : I × I → Y by

F (s, t) =





G(s, 3t) t ∈ [0, 13 ]
f(3t− 1) t ∈ [13 ,

2
3 ]

H(s, 3t− 2) t ∈ [23 , 1]

This function does G at triple speed starting at t = 0 (so no shift is necessary), then does
f at triple speed starting at t = 1

3 (so we need to shift by 1), finally it does H at triple

speed starting at 2
3 (so we need to shift by 2). We illustrate the homotopy as follows. Note

that since we are speeding s up by 3, there are three rectangles stacked vertically.

t=0

t=1

G

f

H

A

B

C

Y

Do the rest of this in the round

F is continuous: Let A = I × [0, 13 ] and B = I × [13 ,
2
3 ] and C = [23 , 1]. All are closed

in I × I. We need to check that G and f agree on A ∩ B = I × 1
3 and f and H agree on

B ∩ C = I × 2
3 . Then we use the Pasting Lemma to conclude that F continuous.

F is a homotopy between f0 and f1:

F (s, 0) = G(s, 0) = f0(s) and F (s, 1) = H(s, 1) = f1(s)

Thus F is indeed an homotopy, and f0 is homotopic to f1.

What path does s = 0 take during this homotopy? What path does s = 1 take?

15. Homotopy Equivalence

Definition. Let (X,Fx), (Y, Fy) be topological spaces. We say X and Y are homotopy

equivalent if there exist continuous f, g where f : X → Y , g : Y → X, such that
f ◦ g ≃ idY and g ◦ f ≃ idX .

Example. If f is a homeomorphism, then X and Y are homotopy equivalent (using the
functions f, f−1).

As the following example illustrates, homotopy equivalent is weaker than homeomorphic.
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Example. Let X = S1 × I and Y = S1. Then S1 × I 6∼= S1, as removing 2 points
disconnects S1, but does not disconnect S1 × I.

Let f : S1 × I → S1 by f(x, y) = x, and let g : S1 → S1 × I by g(x) = (x, 0). These are
continuous but we don’t prove it.

[0,1]

S1

f

g

Then (f ◦ g)(x) = f(x, 0) = x, so f ◦ g = idY .

It remains to show that (g ◦ f)(x) ≃ idX .

Define F : (S1 × I)× I → S1 × I by

F ((x, y), t) = (x, yt)

As F is the composition of continuous functions it is continuous.

F ((x, y), 0) = (x, 0) = g ◦ f(x, y), and F ((x, y), 1) = (x, y) = idX(x, y). Thus F is a
homotopy. Hence X and Y are homotopy equivalent.

15.1. Path Homotopies. Now we return to our study of paths. Recall that in a
path connected space all paths are homotopic. So we need a stronger type of homotopy if
we want to get more interesting results. The following type of homotopy does not all us to
to move the endpoints of the paths.

Definition. Let f0 and f1 be paths in (X,FX ) from a to b. We say f0 is path-homotopic
if there exists a homotopy F from f0 to f1 s.t. ∀t ∈ I, F (0, t) = a and F (1, t) = b. We say
F is a path homotopy and write f0 ∼ f1.
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F(s,0)

F(s,1)a

b

Note that there can be no path homotopy between paths which don’t have the same
endpoints.

Example. Let X be a convex region of Rn, let a, b ∈ X, and let f0 and f1 be paths in X
from a to b.

Claim: f0 ∼ f1.

Proof. Let F (s, t) = (1− t)f0(s) + tf1(s). Then F is the straight line homotopy from f0
to f1. Now let t ∈ I be given. Observe that F (0, t) = (1 − t)f0(0) + tf1(0) = a because
f1(0) = f0(0) = a. Similarly, F (1, t) = f0(1) = b. Thus ∀t ∈ I, F (0, t) = a and F (1, t) = b,
so F is a path homotopy, and thus f0 ∼ f1. �

Example. Let X ∼= D2, let a, b ∈ X, and let f0 and f1 be paths in X from a to b. Then
f0 ∼ f1.

Proof. Let g : X → D2 be a homeomorphism. Let F : (I × I) → D2 be the straight line
homotopy in D2 from g ◦ f0 to g ◦ f1 (Note: D2 is a convex region of R2, so by the last
example we can use the straight line homotopy here).

First, we need to show that g−1 ◦ F is continuous. Note that F is continuous since F is a
homotopy. Note also that since g is a homeomorphism, g−1 is continuous. Thus g−1 ◦F is
the composition of continuous functions, and hence g−1 ◦ F is continuous.

Now we need to show that g−1 ◦ F is a homotopy from f0 to f1.

First, observe that ∀s ∈ I, (g−1◦F )(s, 0) = g−1((1−0)g(f0(s))+(0)g(f1(s))) = g−1(g(f0(s))) =
f0(s) since g is a bijection, and similarly (g−1 ◦ F )(s, 1) = f1(s). Thus, since g−1 ◦ F is
continuous, g−1 ◦ F is a homotopy from f0 to f1.

Lastly, we need to show that g−1 ◦ F is a path homotopy.

Note that ∀t ∈ I, (g−1 ◦ F )(0, t) = g−1((1 − t)g(f0(0)) + tg(f1(0))) = g−1((1 − t)g(a) +
tg(a)) = g−1(g(a)) = a since g is a bijection. Similarly, ∀t ∈ I, (g−1 ◦ F )(1, t) = b. Thus,
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since g−1 ◦ F is a homotopy from f0 to f1, g
−1 ◦ F is a path homotopy, and thus f0 ∼ f1.

�

Theorem. Let (X,FX ) be a topological space and let a, b ∈ X be given. Then ∼ is an
equivalence relation on paths in X from a to b.

Proof. In order to show ∼ is an equivalence relation, we need to show that ∼ is reflexive,
symmetric, and transitive.

Reflexive: If f is a path in X from a to b, let F : (I × I) → X be given by F (s, t) = f(s).
Note that F is a homotopy from f to f since, ∀s ∈ I, F (s, 0) = f(s) and F (s, 1) = f(s)
and F is continuous since f is continuous. Observe that ∀t ∈ I, F (0, t) = f(0) = a and
F (1, t) = f(1) = b, so F is a path homotopy and f ∼ f . Thus, ∼ is reflexive.

Symmetric: Suppose that f1 ∼ f2. Then there exists a path homotopy F from f1 to f2 .
Define F ′ : (I × I) → X given by F ′(s, t) = F (s, 1 − t), ∀(s, t) ∈ (I × I). It is not hard to
check that F ′ is a path homotopy, and thus f2 ∼ f1, so ∼ is symmetric.

Transitive: Suppose that f1, f2, and f3 are paths in X from a to b s.t. f1 ∼ f2 and
f2 ∼ f3. Since f1 ∼ f2, there exists a path homotopy F1 from f1 to f2, and since f2 ∼ f3,
there exists a path homotopy F2 from f2 to f3. Define F3 : (I × I) → X by

F3(s, t) =

{
F1(s, 2t) t ∈ [0, 12 ]

F2(s, 2t− 1) t ∈ [12 , 1]

t=0

t=1

F

F

Xf

f

f

1

1

2

2

3

Now we must show that F3 is a path homotopy from f1 to f3. Observe that A = I × [0, 12 ]

and B = I× [12 , 1] are closed in I×I, and F1 and F2 are continuous, so if F1(s, t) = F2(s, t)

∀(s, t) ∈ A ∩ B, then by the pasting lemma F3 is continuous. Since A ∩ B = I × {1
2},

and, ∀s ∈ I, F1(s, 2(
1
2 )) = F1(s, 1) = f2(s) and F2(s, 2(

1
2 ) − 1) = F2(s, 0) = f2(s), F3

is continuous by the pasting lemma. Now, observe that ∀s ∈ I, F3(s, 0) = F1(s, 2(0)) =
F1(s, 0) = f1(s) and F3(s, 1) = F2(s, 2(1)−1) = F2(s, 1) = f3(s), so F3 is a homotopy from
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f1 to f3. Now, observe that ∀t ∈ I,

F3(0, t) =

{
F1(0, 2t) if t ∈ [0, 12 ]

F2(0, 2t− 1) if t ∈ [12 , 1]

=

{
a t ∈ [0, 12 ]

a t ∈ [12 , 1]

(since F1 and F2 are path homotopies), and thus F3(0, t) = a, ∀t ∈ I. Similarly, ∀t ∈ I,
F3(1, t) = b. Thus, F3 is a path homotopy from f1 to f3, so f1 ∼ f3, and thus ∼ is
transitive.

Thus, ∼ is an equivalence relation of paths in X from a to b. �

Note that the same proof (using only the parts related to continuity and homotopy) works
for ≃.

Definition. Let (X,FX ) be a topological space and let a, b ∈ X be given. For each path
f from a to b in X, define [f ] to be the path homotopy class of f.

Definition. Let f be a path in X from a to b and g be a path in X from b to c. Define
an invisible symbol by [f ][g] = [f ∗ g].

Some remarks:

(1) [f ], [g], and [f ∗ g] are not elements of the same quotient ‘world’ unless a = b = c.

(2) We have to prove that invisible multiplication is well-defined, i.e. if f ∼ f ′ and
g ∼ g′, then we want [f ∗ g] = [f ′ ∗ g′] because [f ] = [f ′] and [g] = [g′].

Lemma (Important). Let (X,Fx) be a topological space. Let f, f ′ be paths in X from a to
b and let g, g′ be paths in X from b to c. If f ∼ f ′ and g ∼ g′, then f ∗ g ∼ f ′ ∗ g′ and
hence [f ][g] = [f ′][g′].

Proof. Let F be the path homotopy from f to f ′, and let G be the path homotopy from
g to g′.

As we can see from the following diagram, we just need to speed things up in the s variable.

a

a

b

b c

c
f

f ’ g’

g

F G
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Define H : I × I → X by:

H(s, t) =

{
F (2s, t) s ∈ [0, 1/2]

G((2s − 1), t) s ∈ [1/2, 1]

We leave it as an exercise to check that H is a homotopy from f ∗ g to f ′ ∗ g′. �

16. Loops and the Fundamental Group

We have shown that the product of two path homotopy classes is well defined. For the
purposes of defining a group of path homotopy classes, we would like all paths to have
the same starting and ending point so that they can be combined. This simplification
motivates the two definitions which follow:

Definition. Let f be a path in X such that f(0) = f(1) = x0 ∈ X. Then f is said to be
a loop in X based at x0.

Note that if f, g are loops in X based at some point x0 ∈ X, then their product f ∗ g is
also a loop based at x0. In particular, we then have that [f ], [g] and [f ][g] = [f ∗ g] are all
path homotopy classes of loops based at x0.

Definition. Let (X,Fx) be a topological space, and let x0 ∈ X. Define π1(X,x0) as the
set of path homotopy classes of loops based at x0 endowed with the operation [f ][g] = [f∗g].
We call π1(X,x0) the fundamental group of X based at x0.

16.1. The Fundamental Group is a Group. Our ultimate goal is to harness the
power of group theory from abstract algebra to study topological spaces. But first we must
prove that π1(X,x0) is actually a group. In other words, if (X,Fx) is a topological space
with x0 ∈ X, we must prove the following:

(1) π1(X,x0) is closed under the invisible operation. In other words, for [f ], [g] ∈
π1(X,x0), [f ][g] ∈ π1(X,x0).

(2) The invisible operation is associative. In other words, given [f ], [g], [h] ∈ π1(X,x0):

([f ][g])[h] = [f ]([g][h])

(3) π1(X,x0) contains an identity element. In other words, there exists [ex0 ] ∈
π1(X,x0) such that for all [f ] ∈ π1(X,x0):

[ex0 ][f ] = [f ][ex0 ] = [f ]

(4) Every element of π1(X,x0) has an inverse. In other words, given f ∈ π1(X,x0),
there exists g ∈ π1(X,x0) such that:

[f ][g] = [g][f ] = [ex0 ]
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If π1(X,x0) satisfies all of these requirements, π1(X,x0) is a group.

Lemma (Closure). Let (X,Fx) be a topological space, and let x0 ∈ X. Let [f ], [g] ∈
π1(X,x0). Then:

[f ][g] ∈ π1(X,x0)

Proof. We know by a previous result that f ∗ g is a path in X from x0 to x0 since x0 is
both the starting point of [f ] and the endpoint of [g]. Consequently, f ∗ g is a loop in X
based at x0, so [f ∗ g] ∈ π1(X,x0). �

Next, we will show that products of path homotopy classes of loops based at a point are
associative.

Lemma (Associativity). Let (X,Fx) be a topological space, and let f , g, and h be paths in
X such that f(1) = g(0) and g(1) = h(0). Then:

([f ][g])[h] = [f ]([g][h])

Proof. Before actually proving the result, we write the definitions of (f ∗ g) ∗ h and
f ∗ (g ∗ h):

(f ∗ g) ∗ h =





f(4s) s ∈ [0, 14 ]

g(4s − 1) s ∈ [14 ,
1
2 ]

h(2s − 1) s ∈ [12 , 1]

f ∗ (g ∗ h) =





f(2s) s ∈ [0, 12 ]

g(4s − 2) s ∈ [12 ,
3
4 ]

h(4s − 3) s ∈ [34 , 1]

We need to construct a homotopy from (f ∗ g) ∗h to f ∗ (h∗ g). We get the main idea from
looking at the picture.

f g h

f g h½ ¾

½¼

t

In this and future situations, we use the following

Algorithm to create homotopies:

(1) At an arbitrary time t, define the s intervals where you do each function.

(2) Determine the length of the intervals.

(3) Find the speed of each function on that interval by taking the reciprocal of the
length.
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(4) Determine the shift so that it starts at the right time.

Based on our formulas for (f ∗ g) ∗ h and f ∗ (g ∗ h), we define the function F : I × I → X
by:

F (s, t) =





f
(

4s
1+t

)
s ∈

[
0, 1+t4

]

g(4s − 1− t) s ∈
[
1+t
4 , 2+t4

]

h
(

4s
2−t − 2+t

2−t

)
s ∈

[
2+t
4 , 1

]

We leave it as an exercise to check that this is indeed a path homotopy. �

From now on we can be lazy and omit parentheses when talking about path homotopy
classes (but not when talking about loops themselves).

Lemma (Identity). Let f be a path in X which begins at x0 and ends at x1. Then [f ][ex1 ] =
[f ] = [ex0 ][f ].

Proof. We prove that f ∗ ex1 ∼ f . The other case is similar.

f

f

½

t

e
x

1

In order to define a homotopy, at t, we will “do” f for s ∈ [0, t(1) + (1 − t)12 ] or, by

simplification, s ∈ [0, t+1
2 ] and ex1(t) for s ∈ [ t+1

2 , 1].

Define F : I × I → X by

F (s, t) =

{
f
(

2s
t+1

)
s ∈

[
0, t+1

2

]

ex1 s ∈
[
t+1
2 , 1

]

We leave it as an exercise to check that this is indeed a path homotopy.�

We’ve now shown that π1(X,x0) is closed, has an identity, and the operation is associative,
so just showing that inverses exist proves that it’s a group.

Lemma (Inverses). Let f be a path in X from x0 to x1. Then [f ][f̄ ] = [ex0 ] and [f̄ ][f ] =
[ex1 ].
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f f½

t

ex
0

hang out

The idea of this proof is different from the usual algorithm. We don’t want to increase the
speed of f ∗ f̄ and wait at x0, since this will never give us ex0 . Rather, we keep f at the
same speed but do less of it, then hang out whenever we are, then return via f̄ .

Proof. We show only that f ∗ f̄ ∼ ex0 , and the other case follows similarly. So at t we
do f at the usual speed for s ∈ [0, t(0) + (1− t)12 ] = [0, 1−t2 ]. Then hang out where we are

for s ∈ [1−t2 , t + (1 − t)12 ] = [1−t2 , 1+t2 ]. Then do f̄ for the remaining time. Note we don’t

shift f because we want it to always start at 0, and we don’t shift f̄ because we want it to
always end at 1. Also both go at the usual speed of 2.

Define F : I × I → X by

F (s, t) =





f(2s) s ∈
[
0, 1−t2

]

f(1− t) s ∈
[
1−t
2 , 1+t2

]

f̄(2s − 1) s ∈
[
1+t
2 , 1

]

Again we leave it as an exercise to check this is a path homotopy. �

It follows that π1(X,x0) is a group. Observe that the set of paths does not have a group
structure, since there is no definition of multiplication between arbitrary paths.

Example. Let X = Rn and x0 be a point in X. Then π1(X,x0) = 〈[ex0 ]〉 since the straight
line homotopy sends every loop to ex0 .

Definition. Let (X,Fx) be path connected and suppose for all x0 ∈ X,

π1(x, x0) = 〈[ex0 ]〉.
Then we say that X is simply connected.

Example. Rn is simply connected.

Example. What about Q? Q is not path connected so it can’t be simply connected. But
π1(Q,x0) = 〈[ex0 ]〉, as ex0 is the only path from x0: all others must pass through irrationals,
and hence cannot be contained in Q.
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The following theorem relates the fundamental group at a point within a path component
to the fundamental group of that point in the ambient space:

Theorem. Let A be a path component of a topological space X, and let x0 ∈ A. Then:

π1(A, x0) ∼= π1(X,x0)

(Note that ∼= denotes a group isomorphism and not a homeomorphism)

Question: What’s the definition of a group isomorphism?

Before proving the theorem, we will cover a quick non-example.

Consider the circle S1as a subspace of R2. Since R2 is a simply connected space, the
fundamental group at every point is trivial. On the other hand, picking some point x0 ∈ S1,
the loop around the circle cannot be deformed in S1 to the point x0 (though we have not
yet proved this). So π1(S

1, x0) is non-trivial and hence not isomorphic to π1(R2, x0).

At first this may seem like it gives a counterexample to the theorem. But no matter how
we embed S1 in R2, we see that S1 is not a distinct path component. So the theorem does
not apply. Intuitively, by embedding S1 in R2, the interior of the circle is part of R2, so we
can deform a loop around S1 based at x0 to the trivial loop by “pulling” the loop through
the middle of the circle, which we could not do when S1 was considered as a space in its
own right.

We now prove the theorem:

Proof. Recall that A is a path component of X. Define ϕ : π1(A, x0) → π1(X,x0) by:

ϕ([f ]A) = [f ]X

We claim that ϕ is a group isomorphism, i.e. that ϕ is a bijection and a group homo-
morphism. In other words, we need to show that ϕ is injective, surjective and that if
a, b ∈ π1(A, x0), then ϕ(ab) = ϕ(a)ϕ(b).

Well Defined: Before we actually prove that ϕ satisfies the properties of an isomorphism,
we have to show ϕ is well defined because ϕ is defined in terms of equivalence classes.
First, let f, g be loops in A based at x0 ∈ A such that f ∼A g. Thus there exists a path
homotopy, F : I × I → A, from f to g. Recall that the inclusion map i : A→ X is defined
as the identity map on X restricted to A. Then i is trivially continuous. Thus we can
extend F to the continuous map i ◦F : I × I → X, and it is easy to see that i ◦F is a path
homotopy in X from f to g, so f ∼X g. Thus if [f ]A = [g]A, then ϕ([f ]A) = ϕ([g]A), and
hence ϕ is well defined.

Injective: Suppose [f ]A, [g]A ∈ π1(A, x0) such that ϕ([f ]A) = ϕ([g]A). Then [f ]X = [g]X .
Hence there exists F : I × I → X, a path homotopy from f to g in X. We show as follows
that the image of F is contained in A. Observe that I × I is path connected and F is
continuous. Thus F (I × I) is path connected, and hence F (I × I) is contained in a single
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path component of X. Now since F (0, 0) = x0 ∈ A, F (I × I) ⊆ A. Therefore, F is a
homotopy from f to g in A. Consequently, f ∼A g, and hence [f ]A = [g]A. Thus ϕ is
injective.

Surjective: Let [f ]X ∈ π1(X,x0), so f is a loop in X based at x0. Hence, f : I → X is a
path containing x0. Since A is a path component, f(I) ⊆ A. Consequently, f is a loop in
A based at x0. Thus ϕ([f ]A) = [f ]X and ϕ is surjective.

Homomorphism: Let [f ]A, [g]A ∈ π1(A, x0). We see that:

ϕ([f ]A[g]A) = ϕ([f ∗ g]A) = [f ∗ g]X = [f ]X [g]X = ϕ([f ]A)ϕ([g]A)

and ϕ satisfies the definition of a homomorphism.

We have proved that ϕ is a bijective, homomorphism, and is therefore an isomorphism
between π1(A, x0) and π1(X,x0). �

We now wish to prove that within a path component the base point doesn’t matter:

Theorem. Let X be a topological space and let x, y ∈ X. Suppose f : I → X is a path
from x to y, then π1(X,x) ∼= π1(X, y).

First we define a map which we will use again later in the course:

Definition. Define uf : π1(X,x) → π1(X, y) by uf ([g]) = [f̄ ∗ g ∗ f ].3

f
g

f

x

y

We now prove the theorem by showing that uf is an isomorphism from π1(X,x) to π1(X, y):

Proof. Again, we need to show that uf is a bijective homomorphism. As usual for
functions defined in terms of equivalence classes, we need to show that uf is actually well
defined.

Well defined: Suppose that g, h are loops in X based at x such that g ∼ h, so there exists
F : I × I → X, a path homotopy from g to h in X. We want to show that:

f̄ ∗ g ∗ f ∼ f̄ ∗ h ∗ f
3Technically, f̄ ∗g∗f should have parentheses, but we dispense with these because we previously proved

that the invisible operation is associative.
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Note,we really should have parentheses. But we omit them because we know that within
the square brackets they aren’t necessary. Since we know trivially f ∼ f , g ∼ h and f̄ ∼ f̄ ,
using our Important Lemma for products of path homotopy classes, it is easy to see that
f̄ ∗ g ∗ f ∼ f̄ ∗ h ∗ f , so uf is well defined.

Injective: Suppose g, h are loops in X based at x such that uf ([g]X ) = uf ([h]X). There-
fore:

[f̄ ∗ g ∗ f ] = [f̄ ∗ h ∗ f ] ⇒ f̄ ∗ g ∗ f ∼ f̄ ∗ h ∗ f
so by our Important Lemma for products and our inverse/identity lemmas, we have that
g ∼ h and uf is injective.

Surjective: Let [g] ∈ π1(X, y). Then [f ∗ g ∗ f̄ ] ∈ π1(X,x), and uf ([f ∗ g ∗ f̄ ]) = [f̄ ∗ (f ∗
g ∗ f̄) ∗ f ], which by associativity, inverses, and identity, is precisely [g]. Therefore uf is
onto.

Homomorphism: Let g, h ∈ π1(X,x). Then

uf ([g])uf ([h]) = [f̄ ∗ g ∗ f ][f̄ ∗ h ∗ f ]
= [f̄ ∗ g ∗ h ∗ f ]
= uf ([g ∗ h])

Therefore, uf is a group isomorphism. �

16.2. Induced Maps. Our overall goal right now is to show that the fundamental
group is a particular type of topological property known as a topological invariant. In
general, a topological invariant is a function on topological spaces such that when apply-
ing the function to homeomorphic spaces you get the same value. So we need to prove
that homeomorphic spaces have isomorphic fundamental groups. To do this we introduce
induced maps.

Definition. Let ϕ : X → Y be continuous, and ϕ(x0) = y0. Define the map

ϕ∗ : π1(X,x0) → π1(X, y0) by ϕ∗([f ]X) = [ϕ(f)]Y . We say that ϕ∗ is induced by ϕ.

Small Fact (about induced maps). Let ϕ : X → Y and ϕ(x0) = y0. Then ϕ∗ is well
defined.

Proof. Let f and g be loops in X based at x0 such that f ∼ g. Then there exists
F : I × I → X, a path homotopy from f to g. Consider ϕ(F ) : I × I → Y . We see that ϕ
is a composition of continuous functions, so is itself continuous.
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Also, observe that

ϕ(F (s, 0)) = ϕ ◦ f(s)
ϕ(F (s, 1)) = ϕ ◦ g(s)

ϕ(F (0, t)) = ϕ(x0) = y0

ϕ ◦ F (1, t) = ϕ(x0) = y0

Thus ϕ(F ) is a path homotopy between ϕ ◦ g and ϕ ◦ f . So ϕ ◦ g ∼ ϕ ◦ f . Hence ϕ∗ is well
defined. �

Lemma. Let ϕ : X → Y be continuous and ϕ(x0) = y0. Then ϕ∗ is a homomorphism.

Proof. Let [f ], [g] ∈ π1(X,x0). We want to show that ϕ∗([f ]X [g]X) = ϕ∗([f ]X)ϕ∗([g]X ).

Observe that

ϕx([f ]X [g]X ) = ϕ∗([f ∗ g]X) = [ϕ(f ∗ g)]Y

ϕ ◦ (f ∗ g)(x) = ϕ∗

{
f(2s), s ∈ [0, 1/2]

g(2s − 1) s ∈ [1/2, 1]

=

{
ϕ ◦ f(2s) s ∈ [0, 1/2]

ϕ ◦ g(2s − 1) s ∈ [1/2, 1]

= (ϕ ◦ f) ∗ (ϕ ◦ g)(s).

So ϕ ◦ (f ∗ g) = (ϕ ◦ f) ∗ (ϕ ◦ g) and, in particular,

[ϕ(f ∗ g)]Y = [(ϕ ◦ f) ∗ (ϕ ◦ g)]Y
= [ϕ ◦ f ]Y [ϕ ◦ g]Y
= ϕ∗([f ]X)ϕ∗([g]X )

This concludes the proof of the lemma. �

Theorem. Let ϕ : X → Y be a homeomorphism and ϕ(x0) = y0. Then ϕ∗ is an isomor-
phism.

With the previous lemma we showed that ϕ∗ is a homomorphism. It remains to show that
ϕ∗ is a bijection.

Proof. Injective: Let [f ]X , [g]X ∈ π1(X,x0) such that ϕ∗([f ]X) = ϕ∗([g]X ). Then by
definition of ϕ∗, we know that [ϕ ◦ f ]Y = [ϕ ◦ g]Y .
Since ϕ ◦ f ∼Y ϕ ◦ g, there exists a path homotopy F from ϕ ◦ f to ϕ ◦ g. Also note that,
as ϕ is a homeomorphism, ϕ−1 : Y → X is continuous.

Hence ϕ−1 ◦ F : I × I → Y is a path homotopy from ϕ−1 ◦ ϕ ◦ f to ϕ−1 ◦ ϕ ◦ g. This is a
path homotopy from f to g.
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Surjective: Recall that ϕ∗ : π1(X,x0) → π1(Y, y0). Let [f ] ∈ π1(Y, y0). Then [ϕ−1(f)]X ∈
π1(X,x0), because ϕ

−1 is continuous.

ϕ∗([ϕ−1(f)]X) = [ϕ ◦ ϕ−1(f)]Y , and as ϕ is a bijection, this is [f ]Y .

This illustrates that ϕ∗ is bijective, and hence is an isomorphism between X and Y . �

Small Fact (about induced homomorphisms). The following are true:

1) If ϕ : X → Y and ψ : Y → Z are continuous, then (ψ ◦ ϕ)∗ = ψ∗ ◦ ϕ∗

2) If i : X → X is the identity, then i∗ is the identity isomorphism

3) Let ϕ : X → Y be continuous and f a path in X from p to q. Then ϕ∗ ◦uf = uϕ(f) ◦ϕ∗.
(recall, uf : π1(X, p) → π1(X, q) is defined by uf ([g]) = [f̄ ∗ g ∗ f ])

Proof. 1) Note that (ψ ◦ ϕ)∗ : π1(X,x0) → π1(Z, (ψ ◦ ϕ)(x0)), is a mapping from equiv-
alence classes of loops in X based at x0 to equivalence classes of loops in Z based at
(ψ ◦ ϕ)(x0). Let [f ]X ∈ π1(X,x0). We then have that (ψ ◦ ϕ)∗([f ]X) = [(ψ ◦ ϕ)(f)]Z .
Similarly, we note that (ψ∗ ◦ ϕ∗)([f ]X) = ψ∗([ϕ ◦ f ]Y ) = [ψ ◦ ϕ ◦ f ]Z = [(ψ ◦ ϕ)(f)]Z .
2) Note that the induced homomorphism is i∗ : π1(X,x0) → π1(X,x0). Let [f ]X ∈
π1(X,x0). Then i∗([f ]X) = [i(f)]X = [f ]X .

3) We want to show that the following diagram commutes:

π1(X, p)
uf−−−−→ π1(X, q)yϕ∗

yϕ∗

π1(Y, ϕ(p))
uϕ(f)−−−−→ π1(Y, ϕ(q))

Let [g]X ∈ π1(X, p). Then note that

(ϕ∗ ◦ uf )([g]X ) = ϕ∗([f̄ ∗ g ∗ f ]X)
= [ϕ ◦ (f̄ ∗ g ∗ f)]Y
= [(ϕ ◦ f̄) ∗ (ϕ ◦ g) ∗ (ϕ ◦ f)]Y

To see that ϕ ◦ f̄ = ϕ ◦ f note that (ϕ ◦ f̄)(s) = ϕ ◦ f̄(s) = ϕ(f(1− s)) = (ϕ ◦ f)(1− s) =
ϕ ◦ f(s). So continuing the above expression, we have that:

[(ϕ ◦ f̄) ∗ (ϕ ◦ g) ∗ (ϕ ◦ f)]Y = [(ϕ ◦ f) ∗ (ϕ ◦ g) ∗ (ϕ ◦ f)]Y
= uϕ◦f ([ϕ ◦ g]Y )
= (uϕ(f) ◦ ϕ∗)([g]X )

We then conclude that ϕ∗ ◦ uf = uϕ(f) ◦ ϕ∗. �
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Lemma. Suppose X is path connected, and x0 ∈ X. Then π1(X,x0) is trivial if and only
if ∀p, q ∈ X and paths f, g in X from p to q, then f ∼ g.

f

g

Proof.

(⇒) Suppose that π1(X,x0) = 〈[ex0 ]〉. Let p, q ∈ X, and f, g paths in X from p to q. Then
f ∗g is a loop based at p. So π1(X, p) ∼= π1(X,x0) by an earlier theorem, from which we can
see that f ∗ g ∼ ep. Using our multiplication and inverse lemmas for path multiplication,
we conclude that f ∼ g.

(⇐) Suppose that ∀p, q ∈ X and paths f, g from p to q, we have that f ∼ g. Let p = q = x0,
let f = ex0 , and let g be a loop in X based at x0. Then g ∼ ex0 . Hence, π1(X,x0) = 〈[ex0 ]〉.
�

We will skip the following section if we are tight for time

16.3. Homotopy Equivalence and Fundamental group. We’d like to prove that
path connected spaces spaces that are homotopy equivalent have isomorphic fundamental
groups. First, we’ll need a technical lemma.

Lemma (Fishing Lemma). Let ϕ,ψ : X → Y be continuous, and ϕ ≃ ψ by a homotopy F .
Let x0 ∈ X, and a path f : I → Y be given by f(t) = F (x0, t). Then uf ◦ ϕ∗ = ψ∗.

Note f is the path taken by the image of the vertical segment at x0. Also, uf : π1(Y, ϕ(x0)) →
π1(Y, ψ(x0)) by uf ([h]Y ) = [f̄ ∗ h ∗ f ]Y .
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φ

ψ

F

x0

f

Y

Proof. I will talk about this proof before we do it in the round.

Let [g] ∈ π1(X,x0). Then uf ◦ϕ∗ ([g]X ) = uf ([ϕ◦g]X ) = [f̄ ∗(ϕ◦g)∗f ]Y . We want to show
that this equals ψ∗([g]X ) = [ψ ◦ g]Y . In particular, we want to show f̄ ∗ ϕ(g) ∗ f ∼Y ψ(g).
We know there is a homotopy (but not a path homotopy) from ϕ(g) to ψ(g), which takes
the point ϕ(x0) along the path f to bring it to ψ(x0). We can think of f as a “fishing rod”,
and to get a path homotopy from f̄ ∗ϕ(g) ∗ f to ψ(g), we reel in the “fish” ϕ(g) along the
fishing rod while deforming the fish according to the homotopy from ϕ(g) to ψ(g).

f

φ(g)

f

φ(g)

reel in while

 deforming fishφ(x )0

ψ(x )0 ψ(x )0

However, rather than finding a path homotopy to show f̄ ∗ ϕ(g) ∗ f ∼Y ψ(g), we define a
path homotopy to show

(
f̄ ∗ ϕ(g)

)
∗ f ∼Y

(
eψ(x0) ∗ ψ(g)

)
∗ eψ(x0). We do this so that the

time segments on the top and the bottom are the same.
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φ(g)

ψ(x )

G

Y

f f

0
e ψ(g) ψ(x )0

e

t
F

(g
(4

s-
1
),

t)

From the picture we see that at time t we hang out at ψ(x0) for s ∈ [0, t4 ], then do part

of f̄ for s ∈ [ t4 ,
1
4 ] at speed 4 shifted so that it starts at s = t

4 and ends at s = 1
4 . Then

for s ∈ [14 ,
1
2 ], we do F (g(s), t) at s speed 4 shifted so that it starts at s = 1

4 and ends at

s = 1
2 . Then do part of f at speed 2 for s ∈ [12 ,

2−t
2 ] shifted so that it starts at s = 1

2 and

ends at 2−t
2 . Finally we hang out at ψ(x0) for s ∈ [2−t2 , 1].

We define G : I × I → Y by

G(s, t) =





eψ(x0) s ∈
[
0, t4

]

f̄(4s − t) s ∈
[
t
4 ,

1
4

]

F (g(4s − 1), t) s ∈
[
1
4 ,

1
2

]

f(2s− 1 + t) s ∈
[
1
2 ,

2−t
2

]

eψ(x0) s ∈
[
2−t
2 , 1

]

We will NOT check in class that this works, because it’s tedious. The proof for you to read
is in blue.

Continuous. G is defined differently over the five closed regions. Over each region, G
is the composition of continuous functions and hence continuous. For G to be continuous
everywhere, the value of G at the intersection of any two adjoining regions must agree.

• s = t
4 : f̄(4 · t4 − t) = f̄(0) = ψ(x0) = eψ(x0).

• s = 1
4 : f̄(4 · 1

4 − 1) = f̄(1− t) = f(t).

F (g(4 · 1
4 − 1), t) = F (g(0), t) = F (x0, t) = f(t).

• s = 1
2 : F (g(4 · 1

2 − 1), t) = F (g(1), t) = F (x0, t) = f(t).

f(21
2 − 1 + t) = f(t).
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• s = 2−t
2 : f(2 ·

(
2−t
2

)
− 1 + t) = f(1) = ψ(x0) = eψ(x0).

Hence by the Pasting Lemma, the function G is continuous.

Homotopy. Consider G(s, 0):

G(s, 0) =





eψ(x0) s ∈ [0, 0]

f̄(4s) s ∈
[
0, 14

]

F (g(4s − 1), 0) s ∈
[
1
4 ,

1
2

]

f(2s− 1) s ∈
[
1
2 , 1

]

eψ(x0) s ∈ [1, 1]

Thus, G(s, 0) = f̄ ∗ ϕ(g) ∗ f . Consider G(s, 1):

G(s, 1) =





eψ(x0) s ∈
[
0, 14

]

f̄(4s − 1) s ∈
[
1
4 ,

1
4

]

F (g(4s − 1), 1) s ∈
[
1
4 ,

1
2

]

f(2s) s ∈
[
1
2 ,

1
2

]

eψ(x0) s ∈
[
1
2 , 1

]

Thus, G(s, 1) =
(
eψ(x0) ∗ ψ(g)

)
∗ eψ(x0).

Path. G(0, t) = ψ(x0), and G(1, t) = ψ(x0).

Hence G is a path homotopy from
(
f̄ ∗ ϕ(g)

)
∗ f to

(
eψ(x0) ∗ ψ(g)

)
∗ eψ(x0). Therefore,

uf (ϕ([g]) = ψ([g]) for all [g] ∈ π1(X,x0) and uf ◦ ϕ∗ = ψ∗. �

We now use the Fishing Lemma to prove that homotopy equivalent spaces have isomorphic
fundamental groups.

Corollary. Let ϕ : X → Y and ψ : Y → X be continuous such that ϕ ◦ ψ ≃ 1Y and
ψ ◦ ϕ ≃ 1X . Let ϕ(x0) = y0. Then ϕx0∗ : π1(X,x0) → π1(Y, y0) is an isomorphism.

Note that given ϕ : X → Y , there can be many different induced homomorphisms ϕ∗
depending on our choice of base point for the fundamental group of X. For this reason,
we use the notation ϕx0∗ to make it clear that we have chosen x0 as the base point.

The proof of this Corollary is a bit confusing, so I’ll do it myself.

Proof. We have already proven that ϕx0∗ is a homomorphism. For ϕx0∗ to be an isomor-
phism, we only need to prove that it’s a bijection. We will need to use the Fishing Lemma,
which we set up as follows.

Let G be a homotopy in X from 1X to ψ◦ϕ, and let F be a homotopy in Y from 1Y to ϕ◦ψ.
Now define a path g inX by g(t) = G(x0, t), and a path f in Y by f(t) = F (y0, t). Then g is
a path from x0 to x1 = ψ◦ϕ(x0) = ψ(y0) and f is a path from y0 to y1 = ϕ◦ψ(y0) = ϕ(x1).
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φ ̊

G

x0

g

X

F

y0

f

Y

ψ

1 X

φ̊ψ

x0

y0

x1

y1

1 Y

Now by the Fishing Lemma, uf ◦1Y∗ = (ϕ◦ψ)∗ and ug ◦1X∗
= (ψ ◦ϕ)∗. However, we need

to specify the base point in the domain of each of these induced homomorphisms. Since f
is a path from y0 to y1, we have uf ◦ 1Y∗ = (ϕ ◦ψ)y0∗; and since g is a path from x0 to x1,
we have ug ◦ 1X∗

= (ψ ◦ ϕ)x0∗.

We can now apply our small facts to get uf ◦ 1Y∗ = uf and (ϕ ◦ ψ)y0∗ = ϕx1∗ ◦ ψy0∗.
Note the subscript on ϕ is x1 because ψ(y0) = x1. Hence uf = ϕx1∗ ◦ ψy0∗. Similarly,
ug = ψy0∗ ◦ ϕx0∗. Note we previously showed that uf and ug are isomorphisms.

We will show that ψy0∗ is an isomorphism and then use this to show that ϕx0∗ is an
isomorphism. Since ug = ψy0∗ ◦ ϕx0∗ is an isomorphism it is onto. It follows that ψy0∗
is onto, since the image of ug = ψy0∗ ◦ ϕx0∗ is contained in the image of ψy0∗. Also since
uf = ϕx1∗ ◦ ψy0∗ is an isomorphism it is one to one. It follows that ψy0∗ must be one to
one, since if ψy0∗([h1]) = ψy0∗([h2]) then uf ([h1]) = uf ([h2]). Thus ψy0∗ is an isomorphism.

Now uf = ϕx1∗ ◦ ψy0∗ implies that uf ◦ ψ−1
y0∗ = ϕx1∗ is an isomorphism. �

It follows from this corollary that the cylinder S1 × I and the circle S1 have isomorphic
fundamental groups. But we still can’t prove that this fundamental group is Z.
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17. Covering Maps

Now the flavor of the course returns to what is was before we started homotopy.

Our ultimate goal is to find a space with non-trivial fundamental group. But first we need
to understand covering spaces.

Definition. Let X and X̃ be topological spaces, and p : X̃ ։ X be a continuous sur-
jection. An open set U ⊆ X is said to be evenly covered by p if p−1(U) is the disjoint
union of open sets Vα, α ∈ A for some index set A, such that for all α ∈ A, p | Vα → U is
a homeomorphism. In this case, we say that each Vα is a sheet covering U .

Example. Let X = D2 with the usual topology, and X̃ = D2 ×N with the usual product

topology. Define p : X̃ → X by p(x, n) = x. We can take U to be any open set in X;

p−1(U) =

∞⋃

i=1

p−1(U) ∩ Vi, where Vi = D2 × i.

X
U

. 
. 

.

X
~

f -1(U)

But this is a boring example.

Example (a non-example). Let X̃ = S1, and let X = S1 ∨S1, be the wedge of two circles.
That is, X is two copies of S1, which agree at a point.

Let x1 and x2 be a pair of antipodal points in S1. Let ∼ be the equivalence relation on

S1 given by x ∼ y if and only if x, y ∈ {x1, x2} or x = y. Let p the quotient map from X̃
to X, corresponding to this relation, and let U be an open set in X containing p(x1) as
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shown.

x1

x2

p

( )

( )

( )

( )

U

V1

V2

Is U evenly covered? The answer is no. To see why, note that p−1(U) = V1 ∪ V2, where
V1, V2 are disjoint open sets in X̃. But p|V1 : V1 → U is not a homeomorphism because it
is not onto.

Definition. Let p : X̃ ։ X be a continuous surjection. Suppose for all x ∈ X, there
exists an evenly covered open set U containing x. We say p is a covering map, with

covering space X̃ , and base space X.

Note the example of the wedge of two circles shows that not all quotient maps are covering
maps.

Example (another non-example). Let X̃ = R2, X = R, and p : R2 → R be defined by
p(x, y) = x. Then for each open U ⊆ X, p−1(U) =

⋃
α∈A Vα. We can think of p−1(U) as

a vertical stack of uncountably many copies of U . For each α ∈ A, p | Vα : Vα → U is a

homeomorphism. However, each Vα is not open in X̃. Thus U is not evenly covered.

Example (Important). Let p : R → S1 be defined by p(x) = (cos(2πx), sin(2πx)). (The
“slinky” space.)

0 1 2 3

p

For each s ∈ S1, an “open interval” around s is evenly covered, and so R is a covering
space.
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Example. X̃ = S1, X = S1 by p : X̃ → X is p((cos(2πx), sin(2πx)) = (cos(4πx), sin(4πx)).
This is also a covering map.

p

I list here two major theorems which we will prove later (if there is time). You will need
these theorems to do the homework.

Theorem (Homotopy Path Lifting Theorem). Let p : X̃ → X be a covering map. Then,

(1) Given a path f in X and a ∈ X̃ such that p(a) = f(0), then ∃! (exists unique)

path f̃ in X̃ such that p ◦ f̃ = f and f̃(0) = a.

(2) Given a continuous map F : I × I → X and a ∈ X̃ with p(a) = F (0, 0), ∃!
continuous map F̃ : I × I → X̃ such that p ◦ F̃ = F and F̃ (0, 0) = a.

X

X

p

f

̰ f
̰

a

X

X

p

̰ ̰

a

F

F

Theorem (Monodromy Theorem). Let p : X̃ → X be a covering map, and let a ∈ X̃. Let
x1, x2 ∈ X. Suppose that p(a) = x1, and that f, g are paths in X from x1 to x2 such that

f ∼ g. Let f̃ , g̃ be the unique paths beginning at a such that p ◦ f̃ = f and p ◦ g̃ = g. Then

f̃(1) = g̃(1) and f̃ ∼ g̃.
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X

X

p

f

̰

f
̰

a

g

g
̰

Now we return to proving things as we go along.

Lemma (Important Lemma on Covering Maps). Let p : X̃ → X be a covering map. Let
x ∈ X. Then the subspace topology on p−1({x}) is the discrete topology.

This lemma tells us that examples like the projection map p : R2 → R are not covering
maps.

Proof. Let y ∈ p−1({x}). We want to show that {y} is open in p−1({x}). Since p is a
covering map, there exists an evenly covered open set U containing x. Then p−1(U) =⋃
α∈A Vα, where the Vα are pairwise-disjoint open sets such that p | Vα : Vα → U is a

homeomorphism for every α ∈ A. Hence, there exists α0 ∈ A such that y ∈ Vα0 . Now, Vα0

is open in X̃ , and y ∈ Vα0 ∩ p−1({x}).
We want to show that Vα0 ∩ p−1({x}) = {y}. Let y′ ∈ Vα0 ∩ p−1({x}) be given. We know
that p | Vα0 is a homeomorphism, so it is injective. Since p(y′) = x, and p(y) = x, we see
that y = y′. Thus, {y} = Vα0 ∩ p−1({x}). So {y} is open in p−1({x}) with the subspace
topology. This completes the proof. �

The take-home message is that in a covering space, points in the pre-image of a single point
are “spread out.”

Not all quotient maps are covering maps as we have seen above. But we will prove that all
covering maps are quotient maps.

Theorem. Let p : X̃ → X be a covering map. Then

(1) p is an open map (this is not true for all quotient maps)

(2) X is a quotient space, and p is a quotient map.
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Proof. 1) Let U be open in X̃. We want to show that p(U) is open. Let x ∈ p(U). We
want to show that there is an open set W such that x ∈W ⊆ p(U).

There exists an evenly covered open set V containing x. Then p−1(V ) =
⋃
α∈A Vα such

that the Vα are disjoint open sets and p | Vα is a homeomorphism for all α ∈ A. Since
x ∈ p(U), there exists y ∈ U such that p(y) = x, and hence there exists α0 ∈ A such that
y ∈ Vα0 .

Because U and Vα0 are both open, U ∩ Vα0 is open in X̃ . Since p | Vα0 : Vα0 → V is a
homeomorphism,

p(U ∩ Vα0) = p(Vα0) ∩ p(U)

= V ∩ p(U)

Furthermore, since p | Vα0 : Vα0 → V is a homeomorphism, p(U ∩ Vα0) = V ∩ p(U) is open
in V . Now since V is open in X, V ∩ p(U) is open in X. Because our x is in both V and
p(U), x ∈ V ∩ p(U) ⊆ p(U). That is, x is an element of an open set contained in p(U).
Hence, p(U) is open and p is an open map.

2) To show X has the quotient topology with respect to p, we want to show that FX =
{U ⊆ X | p−1(U) ∈ FX}.

(⊆) Let V ∈ FX . Because p is continuous, p−1(V ) ∈ F
X̃
. Thus, V ∈ {U ⊆ X | p−1(U) ∈

FX}.

(⊇) Let U ⊆ X such that p−1(U) ∈ F
X̃
. Because p is an open map, p(p−1(U)) is open in

X. Because p is onto p(p−1(U)) = U . Thus, U ∈ FX .

FX = {U ⊆ X | p−1(U) ∈ FX}, so p is a quotient map and X is a quotient space. �

17.1. Lifts.

Definition. Let p : X̃ → X be a covering map and f : Y → X be continuous. We define

a lift of f to be any continuous function f̃ : Y → X such that p ◦ f̃ = f .

Example. Let X̃ = R, X = S1 and p(x) = (cos(2πx), sin(2πx)). Let f : I → S1 by

f(x) = (cos(πx), sin(πx)). Define f̃ : I → R by f(x) = x
2 . Then f̃ is a lift of f .
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0 1

I

f
~

f

X
~

0 1

p

S1

Lemma. Uniqueness of Lifts. Let p : X̃ → X be a covering map and f : Y → X be

continuous and Y be connected. Let f̃0 and f̃1 be lifts of f . Suppose there exists y0 ∈ Y

such that f̃0(y0) = f̃1(y0). Then f̃0 = f̃1.

X

X

p

f

̰

f
̰

f
̰

01

Y

f
̰

0

f
̰

1

Y’ y
0

Vα 0

z

Proof. Let Y ′ = {y ∈ Y | f̃0(y) = f̃1(y)}, then y0 ∈ Y ′. We want to show that Y ′ = Y ,
we will accomplish this by showing Y ′ is clopen in Y (which is connected).

Open: Let y ∈ Y ′. Then there exists an evenly covered open set V containing f(y). Thus

p−1(V ) =
⋃

α∈A
Vα such that Vα’s are disjoint and open and p | Vα : Vα → V is a

homeomorphism.

Let q = f̃0(y) = f̃1(y). There exists an α0 ∈ A such that q ∈ Vα0 . Now

f̃−1
0 (Vα0) and f̃−1

1 (Vα0) are open in Y , and y ∈ f̃−1
0 (Vα0) ∩ f̃−1

1 (Vα0). We claim

that f̃−1
0 (Vα0) ∩ f̃−1

1 (Vα0) ⊆ Y ′.

Let z ∈ f̃−1
0 (Vα0) ∩ f̃−1

1 (Vα0). Then f̃0(z) ∈ Vα0 and f̃1(z) ∈ Vα0 . Since f̃0 and

f̃1 are lifts of f , we have p ◦ f̃0(z) = f(z) and p ◦ f̃1(z) = f(z). Since p|Vα0
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is 1-1 (because p|Vα0 is a homeomorphism) and f̃0(z) ∈ Vα0 and f̃1(z) ∈ Vα0 ,

f̃0(z) = f̃1(z). Thus, z ∈ Y ′.

Hence, f̃−1
0 (Vα0) ∩ f̃−1

1 (Vα0) is an open subset of Y ′ containing y, so Y ′ is open.

Closed: To show Y ′ is closed, we will show Y − Y ′ is open. Let y ∈ Y − Y ′. Then there

exists an evenly covered open set V containing f(y). Hence p−1(V ) =
⋃

α∈A
Vα such

that the Vα’s are disjoint and open and p | Vα : Vα → V is a homeomorphism.

Note that f̃0(y) 6= f̃1(y), and there exists α0, α1 ∈ A such that f̃0(y) ∈ Vα0 and

f̃1(y) ∈ Vα1 . Now the set f̃−1
0 (Vα0) ∩ f̃−1

1 (Vα1) is open and contains y. We claim

that f̃−1
0 (Vα0) ∩ f̃−1

1 (Vα1) ⊆ Y − Y ′.

X

X

p

f

̰

f
̰

f
̰

01

Y

f
̰

0

f
̰

1

Y’

Vα 0

y

Vα 1

Let z ∈ f̃−1
0 (Vα0) ∩ f̃−1

1 (Vα1). Hence f̃0(z) ∈ Vα0 and f̃1(z) ∈ Vα1 . We now want

to show that f̃0(z) 6= f̃1(z) by showing α0 6= α1. Recall that p | Vα0 is 1 − 1

and p ◦ f̃0(y) = f(y) = p ◦ f̃1(y). Since f̃0(y) 6= f̃1(y), it follows that α0 6= α1.
Therefore, Vα0 ∩ Vα1 = ∅.

Therefore f̃0(z) 6= f̃1(z), implying that z ∈ Y − Y ′. This implies y is contained in

the open set f̃−1
0 (Vα0) ∩ f̃−1

1 (Vα1) ⊆ Y − Y ′, making Y − Y ′ open.

Therefore Y ′ is clopen in Y . Because Y ′ is non-empty and Y is connected, Y ′ must be all

of Y . By the definition of Y ′, f̃0 = f̃1. �

How did we use f̃0(y0) = f̃1(y1) in our proof?
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18. More Fundamental Groups

Now we are going to assume the HPLT and the Monodromy Theorem and use them to ob-
tain results about the fundamental group. We’ll prove these important results afterwards.

Note that in this section our results will be of mixed flavors

Our goal in this section is to determine the fundamental group of S1 and a couple other
spaces which are not simply connected. But we need just a teensy bit more machinery.

Definition. Let p : R → S1 be the covering map p(x) = (cos 2πx, sin 2πx). Let x0 = (1, 0),
let f be a loop in S1 with base point x0. Define the degree of f , denoted by deg(f), as

f̃(1) where f̃ is the unique lift of f starting at 0.

Note that we know such a lift exists by the HPLT, and we saw by the lemma above that
the lift is unique. Hence deg(f) exists and is well defined. Observe that p−1({x0}) = Z.

Now we have the theorem we have all been waiting for.

Theorem. Let x0 ∈ S1. Then π1(S
1, x0) ∼= Z.

Proof. We assume WLOG that x0 = (1, 0) since S1 is path connected. We will use the
covering map p : R → S1 defined by p(x) = (cos 2πx, sin 2πx), and the degree function
defined above. Define the map ϕ : π1(S

1, x0) → Z by ϕ([f ]) = deg(f) for every loop f in
S1 based at x0. Our aim is to show that ϕ is an isomorphism.

Well-Defined: Suppose [f ] = [g]. Let f̃ and g̃ be the unique lifts of f and g respectively
based at 0 (which exist by HPLT). Since f ∼ g are homotopic loops in S1 based at x0, by

the Monodromy theorem we know f̃(1) = g̃(1). In particular, deg(f) = deg(g), and hence
ϕ is well-defined.

1-1: Let [f ], [g] ∈ π1(S
1, x0) be such that ϕ([f ]) = ϕ([g]). This means that deg(f) =

deg(g), and hence f̃(1) = g̃(1). But R is simply connected, so since f̃ and g̃ agree on their

endpoints, f̃ ∼ g̃. Hence there exists a path homotopy F̃ : I× I → R such that F̃ (0, t) = f̃

and F̃ (1, t) = g̃. Observe that p◦ F̃ is continuous because it is a composition of continuous

functions, and p ◦ F̃ (0, t) = p ◦ f̃ = f ; p ◦ F̃ (1, t) = p ◦ g̃ = g. Finally, we know that for all

s ∈ I we have F̃ (s, 0) = f̃(1), so p ◦ F̃ (s, 0) = p ◦ f̃(1) = f(1) = x0, and the same holds for

t = 1, so p ◦ F̃ is a path homotopy F which takes f to g, and thus [f ] = [g].

Onto: Let n ∈ Z. Since R is path connected it contains a path f̃ from 0 to n. Then p ◦ f̃
is a loop in S1 based at x0 and deg(p ◦ f̃) = n. Therefore ϕ([p ◦ f̃ ]) = n. This proves that
ϕ is onto.

Observe that our proof that ϕ is a well defined bijection only uses the fact that the covering
space R is simply connected. Keep this in mind for our next result.
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Homo: Let [f ], [g] ∈ π1(S
1, x0). We want to show that ϕ([f ][g]) = ϕ([f ]) + ϕ([g]). Note

that the right hand side is equal to deg(f) + deg(g), while the left hand side is equal to

deg(f ∗ g). So we want to show that deg(f ∗ g) = deg(f) + deg(g). Let f̃ ∗ g be the lift of

f ∗ g beginning at 0. Note that f̃ ∗ g̃ is not defined because f̃(1) 6= (̃g)(0).

We want to show that f̃ ∗ g(1) = f̃(1)+g̃(1). Letm = f̃(1), n = g̃(1), so f̃(1)+g̃(1) = m+n.

So we want to show that f̃ ∗ g(1) = m+ n. Note that f̃(1) 6= g̃(0) so f̃ ∗ g̃ is not defined.
Thus we define a function h : I → R by:

h(s) =

{
f̃(2s) s ∈ [0, 12 ]

g̃(2s − 1) +m s ∈ [12 , 1]

Since f̃ and g̃ are continuous, and when s = 1
2 we have f̃(1) = m, and g̃(0)+m = 0+m = m,

by the Pasting Lemma h is continuous. Also, h(0) = 0 and h(1) = g̃(1)+m = n+m. Thus
h is a path in R from 0 to m+ n. We show as follows that p ◦ h = f ∗ g.

p ◦ h(s) =
{
f(2s) s ∈ [0, 12 ]

p(g̃(2s− 1) +m) s ∈ [12 , 1]

Now observe that

p(g̃(2s − 1) +m) = (cos 2π(g̃(2s − 1) +m), sin 2π(g̃(2s− 1) +m))

= (cos 2πg̃(2s − 1), sin 2πg̃(2s− 1))

= p(g̃(2s − 1))

= g(2s − 1)

Thus we see that p ◦ h = f ∗ g. Hence h is the unique lift of f ∗ g which begins at 0. It

follows that h = f̃ ∗ g, and hence h(1) = m+ n = f̃(1) + g̃(1). Thus

deg(f ∗ g) = deg(f) + deg(g) ⇒ ϕ([f ][g]) = ϕ([f ]) + ϕ([g])

So we conclude that ϕ is an isomorphism, and hence Z ∼= π1(S
1, x0). �

We now rejoice in the fact that we have seen our first non-trivial fundamental group.

Here is a useful theorem about the size of the fundamental group of a space.

Theorem. Let x0 ∈ X and p : X̃ → X be a covering map. If X̃ is simply connected, then
there exists a bijection from π1(X,x0) to p

−1({x0}).

Proof. Let y0 ∈ p−1({x0}), and let ϕ : π1(X,x0) → p−1({x0}) by ϕ([f ]) = f̃(1), where f̃
is the unique lift of f originating at y0. Recall that we only needed simple connectedness
of the covering space in the proof of the above theorem that ϕ was a bijection. So we can
use an identical argument here. �
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Now the fun begins.

Theorem. π1(RP
2, x0) ∼= Z2 (the group consisting of {0, 1} with mod 2 arithmetic written

by algebraists as Z/2Z).

Proof. Define an equivalence relation on S2 as x ∼ y iff x = ±y. We can see that
the quotient map is p : S2 → RP2. Consider any open disk in RP2. Then its pre-image
will be a pair of disjoint open disks such that p restricted to one of these disks will be a
homeomorphism (see figure). Thus such an open disk in RP2 is evenly covered.

2

S2

p

Hence p is a covering map. Let x0 ∈ RP2. By the above theorem, there is a bijection from
π1(RP

2, x0) to p
−1({x0}) (since S2 is simply connected by a homework problem), and we

know that p−1({x0}) has precisely two elements, so π1(RP
2, x0) ∼= Z2 (the only group with

precisely two elements). �

Skip this if we didn’t do homotopy equivalent implies isomorphic fundamental groups

Theorem. R2 6∼= R3

Proof. First, recall some results:

• Rn+1 − {p} is homotopy equivalent to Sn for all n ≥ 1 (by Homework 10)

• π1(S
2, x0) is trivial (by Homework 10)

• π1(S
1, x0) ∼= Z

Suppose there exists some homeomorphism h : R2 → R3. Let p ∈ R2 and h(p) = q ∈ R3.
Therefore f = h|R2−{p} : R2 − {p} → R3 − {q} is a homeomorphism. Also, since we have
shown that homotopy equivalent spaces have isomorphic fundamental groups, we have the
following results.

• π1(R2 − {p}, x0) ∼= π1(S
1, y0) ∼= Z
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• π1(R3,−{q}, z0) ∼= π1(S
2, w0) ∼= {1}

But since f is a homeomorphism, f∗ : π1(R2 − {p}, x0) → π1(R3,−{q}, z0) is an isomor-
phism. However, Z 6∼= {1}, so this is a contradiction.

Therefore R2 6∼= R3, as desired. �

Theorem. Let X = S1 ∨ S1 with wedge point x0. Then π1(X,x0) is not abelian (i.e.,
non-commutative).

Proof. Let Y denote the union of the two axes in R2, and let X̃ be Y with a copy of S1

wedged at every point of the form (z, 0) and (0, z) with z ∈ Z−{0} (see the figure below).

Define p : X̃ → X such that each blue circle and each blue segment of unit length go to
the blue circle, and each red circle and each red segment of unit length go to the red circle.
We can check on the picture to see that every point in S1 has an evenly covered open set
around it. Hence p is indeed a covering map.

X
~

X
f g

p

Let f be a single loop around the blue circle and let g be a single loop around the red circle.

Now lift f ∗ g and g ∗ f beginning at the origin in X̃. The construction of X̃ gives us that

f̃ ∗ g(1) = (1, 0) and g̃ ∗ f(1) = (0, 1). Since these are distinct lifts with the same starting
point, by the Uniqueness of Lifts Theorem we must have f ∗ g 6∼ g ∗ f . Thus π1(X,x0) is
not abelian, as desired.�

Thus π1(X,x0) is a non-trivial group which is different from those we’ve seen so far.

19. Proofs of HPLT and Monodromy

Lemma (Lebesgue Number Lemma). Let X be a compact metric space and let Ω be an
open cover of X. Then ∃ r > 0 such that ∀ A ⊆ X with lub{d(p, q)|p, q ∈ A} < r, A is
contained in a single element of Ω.

(r is said to be a Lebesgue Number for Ω)
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We proved this lemma in the homework. We will now use it to prove the existence of lifts.

Theorem (Very Important Homotopy Path Lifting Theorem). Let p : X̃ → X be a cover-
ing map. Then,

(1) Given a path f in X and a ∈ X̃ such that p(a) = f(0), then ∃! (exists unique)

path f̃ in X̃ such that p ◦ f̃ = f and f̃(0) = a.

(2) Given a continuous map F : I × I → X and a ∈ X̃ with p(a) = F (0, 0), ∃!
continuous map F̃ : I × I → X̃ such that p ◦ F̃ = F and F̃ (0, 0) = a.

X

X

p

f

̰

f
̰

Proof. 1) ∀ x ∈ f(I), ∃ Vx an evenly covered open set containing x. ∀ x ∈ f(I), f−1(Vx)
is open in I, so {f−1(Vx)|x ∈ f(I)} is an open cover of I. So, ∃ Lebesgue number r for
this cover. Now ∃ n ∈ N such that 1

n
< r. Thus ∀ k ≤ n, [k−1

n
, k
n
] is contained entirely in

some f−1(Vx). So, ∃ {V1, V2, ..., Vn} ⊆ {Vx} such that ∀ k ≤ n, f([k−1
n
, k
n
]) ⊆ Vk.

First, V1 is evenly covered and f(0) ∈ V1, so a ∈ p−1(V1) =
⋃
α∈A1

Vα. So, ∃ α1 ∈ A1

such that a ∈ Vα1 . p|Vα1 : Vα1 → V1 is a homeomorphism. So ∀ s ∈ [0, 1
n
], define

f̃(s) = (p|Vα1)
−1f(s). Note that f̃ : [0, 1

n
] → X̃ continuous because (p|Vα1)

−1 is a home-

omorphism. Now note that, as above, p−1(V2) =
⋃
α∈A2

Vα. f(
1
n
) ∈ V2 by definition. ∃

α2 ∈ A2 such that f̃( 1
n
) ∈ Vα2 . So, as above, define f̃ : [ 1

n
, 2
n
] → X̃ by f̃(s) = (p|Vα2)

−1f(s).

f̃ : [0, 2
n
] → X̃ is therefore continuous by Pasting Lemma. Continue this process to define

f̃ . Furthermore, f̃ is unique by the Uniqueness Lemma which we already proved.

2) ∀x ∈ F (I × I) ∃ evenly covered open set Vx. {F−1(Vx)} is an open cover of I × I, so

it has a Lesbegue number r. ∃ n >
√
2
r
. ∀ i ≤ n, let Ai = [ i−1

n
, i
n
], Bi = [ i−1

n
, i
n
]. ∀ i, j,
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F (Ai ×Bj) ⊆ Vij for some Vij ∈ {Vx}. By Part 1, we can lift F |(I × {0} ∪ {0} × I) to F̃ :

(I × {0} ∪ {0} × I) → X̃ such that F̃ (0, 0) = a ∈ X̃.

Begin by observing that V11 is evenly covered by hypothesis, and F (I1 × J1) ⊆ V11. This
means that p−1(V11) =

⋃
α∈A11

Vα where the Vα are disjoint open sets and A11 is some

index set. Since F (0, 0) ∈ V11, and since F̃ (0, 0) = a, it follows that there exists some
α11 ∈ A11 such that a ∈ Vα11 .

Now we worry that this choice of Vα11 will agree with how we defined F̃ on the set L.

Worry not! For L is connected, and L ∩ (I1 × J1) is connected, and since F̃ is continuous,

F̃ (L∩(I1×J1)) is connected. Since the Vα are open and disjoint, we may therefore conclude

that F̃ (L ∩ (I1 × J1)) ⊆ Vα11 (otherwise it would be disconnected).

Since V11 was evenly covered, we know that p | Vα11 is a homeomorphism, so we may define

F̃ : I1 × J1 → X̃ by:

F̃ (s, t) = (p | Vα11)
−1 ◦ F (s, t)

This is a composition of continuous functions, so is continuous. Furthermore, F̃ : L∪ (I1 ×
J1) → X̃ is continuous since we showed that F̃ (L ∩ (I1 × J1)) ⊆ Vα11 , so we apply the
Pasting Lemma.

Now we want to extend F̃ to the rest of I × I, and so we move to I2 × J1. Here we
have an analogous situation as before: We want to choose the appropriate Vα associated

with V21 so that our extension of F̃ agrees with what we had previously. But again,

F̃ ((I2×J1)∩ (L∪ (I1×J1))) is connected, so following the argument from above there will

be an appropriate choice of Vα to make it “work”. So we inductively define F̃ : I × I → X̃

such that it is continuous as before, and p ◦ F̃ = F and F̃ (0, 0) = a. That F̃ is unique
follows from our Uniqueness of Lifts Lemma above.

We iterate this argument for each tile Ii × Jj, and so inductively define a unique lift of F :

F̃ : I × I → X̃ such that F̃ (0, 0) = a. �

The natural intuition is that our new function F̃ is a path homotopy when F is a path
homotopy. This intuition provides a delightful segue to the next theorem:

Theorem (Monodromy Theorem). Let p : X̃ → X be a covering map, and let a ∈ X̃. Let
x1, x2 ∈ X. Suppose that p(a) = x1, and that f, g are paths in X from x1 to x2 such that

f ∼ g. Let f̃ , g̃ be the unique lifts of f, g beginning at a. Then f̃(1) = g̃(1) and f̃ ∼ g̃.

Before beginning the proof, we observe with relish the etymology of monodromy. Mono
being the prefix for one, and dromy being some sort of Greek for a race track. So in a
sense monodromy means one path.

Proof. f ∼ g means that there exists a path homotopy F : I × I → X, and so by the

previous theorem there exists a unique lifting of F , whose name is F̃ : I × I → X̃ , and F̃
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has the property that F̃ (0, 0) = a and p ◦ F̃ = F . Now f̃ , g̃ are lifts of f, g respectively.

Consider F̃ | (I × {0}). This is a path in X̃ from a to F̃ (1, 0). Observe that:

p ◦ F̃ | (I × {0}) = F | (I × {0}) = f

since F was a path homotopy, and on the other hand:

p ◦ F̃ | (I × {1}) = F | (I × {1}) = g

The first observation allows us to conclude that F̃ | (I × {0}) is a lift of f beginning at a.

By the uniqueness of lifts, we conclude that F̃ | (I × {0}) = f̃ . We want to say the same

for F̃ | (I×{1}), but we do not know that F̃ (0, 1) = a, so we cannot immediately conclude
that this is equal to g̃ since it could possibly be a lift of g originating at some other point.

We claim: F̃ | ({0} × I) = a. To see that this is the case, we know:

p ◦ F̃ | ({0} × I) = F | ({0} × I) = x1.

which implies that

F̃ | ({0} × I) ⊆ p−1(F | ({0} × I) = p−1({x1})

Now we know that since p is a covering map, p−1({x1}) has the discrete topology. Also,

F̃ ({0} × I) is connected, so must contain only a single point of p−1({x1}). Certainly

a ∈ F̃ ({0} × I), so a = F̃ ({0} × I) as desired.

The previous consideration tells us that F̃ | (I × {1}) = g̃, since the left hand side is a lift
of g originating at a, and by the uniqueness of lifts this must be g̃. To finish off proving

that F̃ is a path homotopy, we need to show that the endpoints are constant as well. That

is, we want to show that F̃ ({1}× I) = a′ for some a′ ∈ X̃. But for this, the same argument
as above applies, replacing every instance of x1 with x2. So we conclude that:

F̃ (1, 0) = f̃(1) = g̃(1) = F̃ (1, 1)

which was part of what we were trying to prove. All these considerations together tell us

that F̃ is a path homotopy between f̃ and g̃, so f̃ ∼ g̃ and we are done. �

Note: Loops may lift to paths, but it follows from the Monodromy Theorem that trivial
loops lift to loops (why?).

20. Products

Theorem. Let X and Y be path connected and x0 ∈ X and y0 ∈ Y . Then π1(X ×
Y, (x0, y0)) ∼= π1(X,x0)× π1(Y, y0).
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Proof. Let p : X × Y → X and q : X × Y → Y be the projection maps. Define
ϕ : π1(X × Y, (x0, y0)) → π1(X,x0) × π1(Y, y0) by ϕ([f ]) = (p∗([f ]X×Y ), q∗([f ]X×Y )) =
([pf ]X , [qf ]Y ).

Well-defined: Suppose f ∼ f ′ by a path homotopy F : I × I → X × Y . Then p ◦ F and
q ◦ F are path homotopies from p ◦ f to p ◦ f ′ and from q ◦ f to q ◦ f ′ respectively. So
([pf ]X , [qf ]Y ) = ([pf ′]X , [qf ′]Y ) as required.

Homomorphism: ϕ([f ][g]) = (p∗([f ][g]), q∗([f ][g]). SInce p∗ and q∗ are homomorphisms,
this is (p∗([f ])p∗([g])), q∗([f ])q∗([g])). By definition of the product of groups this is

(p∗([f ]), q∗([f ])) × (p∗([g], q∗([g])) = ϕ([f ])× ϕ([g]).

1-1: Suppose that ϕ([f ]) = ϕ([g]). Then ([pf ]X , [qf ]Y ) = ([pg]X , [qg]Y ). Hence p◦f ∼ p◦g
and q◦f ∼ q◦g. Hence there are homotopies P : I×I → X from p◦f to p◦g and Q : I×I →
Y from q ◦ f to q ◦ g. Define H : I × I → X × Y by H(s, t) = (P (s, t), Q(s, t)). Then H is
continuous since F and G are. Also H(s, 0) = (P (s, 0), Q(s, 0)) = (p(f(s)), q(f(s)) = f(s)
and similarly H(s, 1) = g(s). Thus f ∼ g.

Onto: Let [f ] ∈ π1(X,x0) and [g] ∈ π1(Y, y0). Define h : I → X×Y by h(s) = (f(s), g(s)).
Then h is continuous since both f and g are. Also h(0) = (x0, y0) = h(1). So [h] ∈
π1(X × Y, (x0, y0)), and ϕ([h]) = ([ph], [qh]) = ([f ], [g]). So ϕ is onto. �

Example: It follows from this theorem that π1(T
2, x0) = Z× Z.


