The effective potential energy function for light described in figure 12.2 is

$$\tilde{V}(r) = \frac{1}{r^2} \left(1 - \frac{2GM}{r} \right)$$
(12.18)

Note that this function goes to zero at r = 2GM and as $r \to \infty$. You can show that it has a single extremum at r = 3GM and that $\tilde{V}(3GM) = 1/[27(GM)^2]$.

Exercise 12.3.1. Verify this last statement.

Box 12.3

Features of the Effective Potential Energy Function for Light

In flat spacetime, the equations that correspond to equations 12.1 and 12.2 are

Box 12.4

Photon Motion in Flat Space

 $b = \frac{\ell}{e} = \frac{r^2 d\phi/d\tau}{dt/d\tau} = r^2 \frac{d\phi}{dt}$ $0 = -dt^2 + dr^2 + r^2 d\phi^2$

(12.20)

(12.19)

Exercise 12.4.1. Show that equation 12.5 follows from these equations.