
128 12  Photon Orbits

 The Problem with Photons. Since the proper time x along a photon world-
line is zero, we cannot directly apply the geodesic equation 10.1 or any of the equa-
tions of motion derived from it in chapter 10 to photons. However (as discussed in 
chapter 8), ordinary particles become more and more photon-like as their mass m 
becomes negligible compared to their energy. To fi nd equations of motion for pho-
tons in Schwarzschild spacetime, we will therefore use the equations in chapter 10 
in combinations that remain well-defi ned in the limit that .m 0"

 The Impact Parameter b. With this in mind, let us defi ne
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This is a conserved quantity for any geodesic, and it remains perfectly well-defi ned 
as we take m 0" . The quantity b corresponds to perpendicular distance between 
the particle’s trajectory at very large r and the radial line initially parallel to that 
trajectory, as shown in fi gure 12.1 (see Box 12.1  ). In classical physics, we call this 
distance the trajectory’s impact parameter, and we will continue that usage here.
 Note that in fl at space, this expression would simply be /b r d dt2 z= .

 The Equation of Radial Motion for a Photon. According to the Schwarz-
schild metric equation, the coordinate differences dt, dr, and dz between two infi n-
itesimally-separated events along an equatorial photon worldline will be related by 
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If we divide both sides by ( / )GM r dt1 2 2- , use equation 12.1, and rearrange things 
a bit (see Box 12.2  ), we get
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Equations 12.1 and 12.3 provide a complete set of equations of motion for the pho-
ton in that, given b, we could (in principle) solve equation 12.3 for r(t) and then 
substitute this into equation 12.1 and to fi nd z(t). This parameterizes the photon’s 
motion not in terms of proper time x (as we would with an ordinary particle) but in 
terms of the Schwarzschild time coordinate t.
 We can put this equation into a more evocative form if we divide both sides of 
equation 12.3 by b2 to get
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This equation has the form of a conservation of energy equation, where 1/b2 plays 
the role of the conserved energy, the fi rst quantity on the right side is a complicated 
quantity we might consider a “radial kinetic energy”, and the last term plays the role 
of an effective potential energy. With the help of this equation, we can read char-
acteristics of a photon’s motion off a graph of potential energy graph like the one 
shown in fi gure 12.2 (see Box 12.3  ) for a discussion of the features of this effective 
potential energy function). In particular, note that for b > GM27  (that is, for 1/b2 < 
1/27[GM]2), a photon coming in from infi nity will rebound to infi nity, but for impact 
parameters less than this critical value, the photon will spiral in to r = 0. Note also 
that photons have a possible (unstable) circular orbit at r = 3GM.
 The equivalent equation of motion for fl at space (see Box 12.4  ) is
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Note that in this case, the effective potential energy function 1/r2 has no peak, but 
rather increases to infi nity as r becomes small. This means that a photon coming in 
from infi nity will always go back out to infi nity, as one would expect in fl at space.
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Figure 12.1: This fi gure illustrates the 
meaning of the impact parameter b.
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