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Abstract

Mathematical models of tumor-immune interactions provide
an analytic framework in which to address specific questions
about tumor-immune dynamics. We present a new mathe-
matical model that describes tumor-immune interactions,
focusing on the role of natural killer (NK) and CD8+ T cells
in tumor surveillance, with the goal of understanding the
dynamics of immune-mediated tumor rejection. The model
describes tumor-immune cell interactions using a system
of differential equations. The functions describing tumor-
immune growth, response, and interaction rates, as well as
associated variables, are developed using a least-squares
method combined with a numerical differential equations
solver. Parameter estimates and model validations use data
from published mouse and human studies. Specifically, CD8+

T-tumor and NK-tumor lysis data from chromium release
assays as well as in vivo tumor growth data are used. A
variable sensitivity analysis is done on the model. The new
functional forms developed show that there is a clear
distinction between the dynamics of NK and CD8+ T cells.
Simulations of tumor growth using different levels of
immune stimulating ligands, effector cells, and tumor
challenge are able to reproduce data from the published
studies. A sensitivity analysis reveals that the variable to
which the model is most sensitive is patient specific, and can
be measured with a chromium release assay. The variable
sensitivity analysis suggests that the model can predict which
patients may positively respond to treatment. Computer
simulations highlight the importance of CD8+ T-cell activa-
tion in cancer therapy. (Cancer Res 2005; 65(17): 7950-8)

Introduction

Therapeutic vaccines are being developed and tested as a
promising new approach to treatment for cancer patients. There
are still many unanswered questions about how the immune
system interacts with a growing tumor, and which components of
the immune system play significant roles in responding to
immunotherapy. Mathematical models provide an analytic frame-
work in which to address such questions, and these models can be
used both descriptively and predictively. It is important to develop
models of tumor growth that include a representation of an
immune response. The ultimate goal is to create models that can
reflect a system’s response to emerging biological therapies, such as
vaccine therapy. Mathematical modeling of tumor growth and

treatment has been approached by a number of researchers using a
variety of models over the past decades ( for overviews, see for
example refs. 1–5).
Our new mathematical model of tumor-immune interactions

sheds light on the differing roles of the natural killer (NK) and CD8+

T cells in suppressing various tumor cell lines in mice and humans.
NK cells are large granular lymphocytes that do not express
markers of either T- or B-cell lineage. A constituent of innate
immunity, they recognize and destroy tumor cells, among others,
independent of prior exposure. NK cells are thought to play a key
role in preventing the development of clinical cancer by killing
abnormal cells before they multiply and grow.
T cells, which carry the CD3+ marker, are morphologically small

lymphocytes in the peripheral blood. They develop in the thymus
and orchestrate the immune system response to infected or
malignant cells. CD3+CD8+ T cells (also called CD8+ T cells) are a
critical subpopulation of T-lymphocytes which can be cytotoxic to
tumor cells provided previous sensitization has occurred.
Our model is based on and validated by recent experimental

studies by Diefenbach et al. (6), in which mouse tumor cell lines are
modified to express higher levels of immune stimulating NKG2D
ligands. We further validate our model using additional human
data provided by Dudley et al. (7), in which subjects with
metastatic melanoma are treated with highly selected tumor-
reactive T cells. Both the mouse and the human studies provide
vital experimental information about tumor growth rates and
effector to target lysis rates. The model is used to explore the
dynamics of tumor rejection, the specific role of the NK and CD8+

T cells, and the development of protective immunity to subsequent
tumor rechallenge.
The mathematical structure of the model is built on earlier

modeling work from refs. 8 and 9 in which tumor growth, an
immune response, and chemotherapy treatment are represented by
a system of differential equations. Our current model also extends
other lower-dimensional models, such as that described in ref. 10,
in which different cell populations are represented as interacting
species. Other mathematical models that include an immune
interaction with a tumor are described in refs. 3, 11–24.

Materials and Methods

Published Data
The dynamics of our mathematical model, as well as certain parameter

values, are borrowed from assertions and data provided in the following two

publications. A brief summary of each publication follows.
Mouse data (6). In this study, the authors show that ectopic

expression of certain murine NKG2D ligands in several tumor cell lines

resulted in rejection of the tumors by syngeneic mice, and that this
rejection was mediated by both NK cells and CD8+ T cells. A retrovirus

expression system was used to ectopically express high levels of these

ligands in thymoma, T-cell lymphoma, and melanoma. Groups of mice

were inoculated s.c. with syngeneic tumor cell transductants. The
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experimental results in this work showed that if expression of these
ligands was low, tumor establishment, growth, and successful evasion of
immune responses in mice took place. However, sufficiently high levels of
ligand expression created a significant barrier to tumor establishment in
the mice. The authors stated that there is hope that these treatments
with ligand-transduced tumor cells might eventually lead to the ability to
effectively eliminate preestablished tumors, as well as naturally arising
tumors. The main conclusions of the experiments in ref. 6 can be
summarized as follows: (a) NKG2D ligand expression (at sufficiently high
levels) causes activation of CD8+ T cells and NK cells. (b) Ligand-
transduced tumor cells can stimulate protective immunity to tumor
rechallenge with ligand-negative tumor cells. (c) Tumor cells engineered
to up-regulate ligand expression are much less likely to establish tumors
than wild-type low-ligand tumor cells. (d) Typical levels of NKG2D
ligands naturally found on most tumor cell lines are low and thus
insufficient to trigger host response. The hope is that tumor immunity
can be boosted by engineering cells with higher ligand levels.

Human data (7). Patients with metastatic melanoma were treated with
the adoptive transfer of highly selected tumor-reactive T cells directed
against overexpressed self-derived differentiation antigens. In previous
trials, increasing the number of circulating CD8+ CTL precursor cells
showed no correlation with tumor regression. However, lympho-depleting
chemotherapy has been shown to have a positive effect on the efficacy of
T-cell transfer therapy, perhaps because lympho-depletion disrupts the
regulating mechanisms of the immune system. The patients in this study
received immuno-depleting chemotherapy for 7 days before being treated
with tumor-infiltrating lymphocytes (TIL) expanded in vitro . Six of the
thirteen patients in the study showed objective clinical responses, with
significant shrinkage of metastatic deposits. Two of these patients were
selected as exhibiting particularly strong immune responses. After
validating the functional forms of our mathematical model against the
mouse data in ref. 6, we tested the generality of our model by comparing
mathematical predictions to the human data in this published study. We
used data collected from the two strongly responding patients to validate
our model because careful measurements of lymphocytosis were made in
both cases (see Fig. 2). Data on the immune responses of less strongly
responding patients were not available. An intriguing question to ask in
future work when such data do become available is whether the dynamics
predicted in this model can account for the nonresponding or low-
responding cases.

Model Development
The specific biological assumptions we took into account when

developing our model equations are based on both accepted knowledge

of immune system function and conclusions stated in refs. 6 and 7. The
assumptions include:

(1) The tumor cells grow logistically in the absence of an immune
response. This assumption is based on previous work, and is also

suggested by graphs in ref. 6 of tumor growth in mice without an

immune response. Other mathematical forms, such as Gompertzian

growth and power-law growth (see ref. 25), have been considered in
other contexts, and can also be made to fit these data. However, we

chose here the logistic form because it was the simplest form for

which predictions also agreed with the experimental data.

(2) Both NK cells and CD8+ T cells can kill tumor cells.
(3) Tumor cells have the potential to engender cytocidal activity in

previously naive and noncytotoxic cells. Both NK cells and CD8+ T cells

respond to tumor cells by increasing metabolic activity and releasing
various lymphokines, including IFN-g. Note that the level of effector cell

‘‘effectiveness’’ depends on both the number of cells present as well as

the cytotoxicity of individual cells. In the model, we do not separate the

measures of high effectiveness per cell from an increase in cell
population, but measure the combined overall increase in effectiveness

in response to tumor.

(4) As part of innate immunity, NK cells are always present and active in

the system, even in the absence of tumor cells.

(5) As part of specific immunity, tumor-specific CD8+ T cells are recruited
once tumor cells are present.

(6) Each NK cell and CD8+ T cell will eventually become inactivated after

some number of encounters with tumor cells.

In the equations, we denote the three cell populations by

T(t), tumor cell population at time t ;

N(t), total level of NK cell effectiveness at time t ;

and L(t), total level of tumor-specific CD8+ T-cell effectiveness at time t .

Model Equations
Using the list of assumptions from above, we describe the system as three

coupled differential equations, where each equation gives the rate of change

of the particular cell population in terms of growth and death, cell-cell kill,

cell recruitment, and cell inactivation. In particular,

rate of change of tumor cell population = (growth and death rate) �
(cell-cell kill rate)

and rate of change of active effector cell populations = (growth and

death rate) + (recruitment rate) � (inactivation rate).

The mathematical forms of the growth and death terms for tumor and

immune cell populations will reflect assumptions (1), (4), and (5).
Assumption (2) is reflected in the cell-cell kill term; assumption (3) gives

rise to the effector cell recruitment terms; and assumption (6) is

incorporated through the effector inactivation terms.
Immune recruitment terms are generally assumed to be of a

Michaelis-Menten form (see, e.g., ref. 10 in which Michaelis-Menten
dynamics are derived for immune cell recruitment by cancer cells). These
dynamics are commonly used in mathematical tumor models that
include an immune component because they allow for a saturation effect
(see, e.g., ref. 19). In the case of the CD8+ T cells, in addition to being
recruited by interactions with T-cell processed tumor cells through a
Michaelis-Menten dynamic, additional CD8+ T cells are stimulated by the
interaction of NK cells with tumor cells. This NK stimulation is
represented by the rNT term in Eq. (C). The term rNT, representing
interactions between NK cells and tumor cells, is the vehicle through
which we model the fact that the specific immune response of the CD8+

T cells is activated only after the activation of the earlier response of
innate immunity.

To determine the fractional cell kill dynamics, data from chromium
release assays published in refs. 6 and 7 were used. Chromium release assays
determine the ability of CD8+ T cells to lyse target cells expressing specific
ligands. The assays in both refs. 6 and 7 were standard 4-hour 51Cr release
assays. Standard techniques exist for collecting, storing, and coculturing
patients’ immune cells with tumor cells, a procedure which can be
implemented before the onset of treatment, or anytime thereafter. The lytic
activity of these cells can then be analyzed with the assay (see, e.g.,
approaches referenced in ref. 7). The fractional cell kill term for the NK cells
was assumed to be proportional to the size of the NK cell population. This
assumption was consistent with all the data we examined. However, the
same assumption was not consistent with the data for tumor-specific CD8+

T cells.

We therefore introduced a new functional form for the (CD8+ T)-tumor

kill term, represented by D in Eq. (A), given explicitly in Eq. (D) below.

This term we say is of a ‘‘rational’’ form. Because this term is an
innovation in this model, its derivation is fully discussed in ‘‘Fractional

cell kill,’’ and results using this form are presented in ‘‘New functional

forms.’’

Substituting specific mathematical forms for each of the growth, death,
recruitment, and inactivation terms yields the following system of

equations:

dT

dt
¼ aTð1� bTÞ � cNT � D ðAÞ

Mathematical Modeling of Immune Response to Tumor
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dN

dt
¼ r � fN þ gT 2

hþ T 2
N � pNT ðBÞ

dL

dt
¼ �mLþ jD2

k þ D2
L� qLT þ rNT ðCÞ

where

D ¼ d
L=Tð Þk

sþ L=Tð Þk
T ðDÞ

Table 1 provides a detailed listing of the parameters in this model, along
with their units, descriptions, numerical values for the simulations, and

reference sources from which these values were taken. Detailed develop-

ment of all terms, except for the new fractional cell kill term D discussed

below, can be found in ref. 8.

Fractional Cell Kill
A crucial component of the model equations is the set of terms

describing the interaction or ‘‘competition’’ between the tumor cells and

either the NK cells or the CD8+ T cells. It is common to assume that

that the action of the effector cells is to reduce the tumor cell popu-

lation by a term proportional to both the effector and tumor popu-

lations (see, for example, refs. 1, 26, 20, 16, 10, 8). Mathematically, this is

expressed using the simplest product form for the competition between

effector cells and tumor cells. In our case, the effect of the NK cells on

the tumor cell population would be expressed with the term �cNT,

whereas the form of the CD8+ T-cell effect would be �dLT, where c and

d are proportionality parameters determined through experiment. As

discussed below, we found that although this simple linear product term

was sufficient to reproduce in simulations the experimental interaction

of NK cells with tumor cells, it did not accurately reflect the action of

the CD8+ T cells.

We did data fitting experiments using a generalization of the product

term: a power term that allows for exponential growth. Using cell lysis

data from ref. 6, we employed an iterative process to find the parameters

c and v in cNvT, and d and k in dLkT . The procedure involved

minimizing the distance between the data points and the predicted percent

lysis curves generated by the model over a range of c , v, d , and k values. For

each [c , v] and [d , k] pair, a prediction was made by solving a system of

differential equations up to time T final = 4 hours, with initial values from the

effector/target ratio data in ref. 6. The optimization was done using an

iterative procedure to determine the least-squares fit to the data, again

through repeated solutions of the differential equations. We found that the

best-fit exponent for the NK kill term was v � 1. Because a good

mathematical model will be one in which the desired behaviors of the

system are captured using the simplest mathematics possible, we chose to

keep the product form �cNT to describe the effect of the NK cells on tumor

cells. In fact, the optimal value of c , determined using our algorithm,

reproduced the lysis rate data extremely well (see Fig. 1, top).

However, when fitting for variables d and k for the CD8+ T-cell kill term,

we found that the power form produced growth curves for T that were not

particularly good fits to the data provided in ref. 6. Instead, we found that
we could produce curves that better fit the data by allowing this term to

have the rational form given in Eq. (D), for which we also had to determine

parameter s . In Eq. (D), the exponent k represents how the lysis rate

depends on the effector/target ratio, the parameter s affects the steepness
of the curve, and parameter d gives the maximum lysis rate. Further

comment on the fits to the data with this rational law dynamic is given in

Results. We note that the additional parameter in Eq. (D) gives three degrees
of freedom, so that a better fit to the data should be expected using the

rational form. However, because the observations in ref. 6 give five data

points for each cell type considered, the closeness of fit to the data supports

the idea that the form of this term is correct. In particular, both in vitro and
in vivo experiments indicate that percent lysis seems to be a function of the

ratio of CD8+ T cells to tumor cells, explaining the appearance of (L/T).

Furthermore, the data indicate that the percent of cells lysed never exceeds

a maximum, a saturation effect that is reflected by the rational form given
in Eq. (D).

This saturation effect highlights the fact that the NK cells and CD8+ T
cells are interacting with tumor cells in a qualitatively different way
because there is no saturation level for the NK cell competition term. It
may be that the NK cell-kill rate could achieve saturation as well in
theory, but in practice this does not occur. On the other hand, it may be
that the antigen-specific T cells follow this curve to saturation because
they are targeting a specific tumor type, and are therefore more effective
in terms of cell-cell interactions.

Additional Model Parameters
From ref. 6 we were able to get data on the growth curves in the absence

of an immune response, which allowed us to estimate parameters a and b .
Thesemodel parameters were estimated from the data in ref. 6 byminimizing
a least-squares distance using optimization software built into MATLAB6.
Datameasuring the percent of IFN-g producing immune cells as a function of
ligand expression allowed us roughly to estimate immune recruitment rates
stimulated both by ligand-transduced and control-transduced tumor cells.
Other parameters, such as the background source rate for NK cells (r) and
death rates for immune cells ( f and m), were taken from the literature (e.g.,
refs. 10 and 27). Although some of these variables are rough estimates, and
may deviate from other specific data, the model as a whole qualitatively
describes the observed data both in the mouse and in the human
experiments.

Results

The model can be used to simulate the effect of enhancing ligand
expression on tumor cells by allowing the relevant parameters to
depend on the tumor cell type. The relevant parameters in this
model are c and d , the effectiveness of the immune cells, along with
g and j , the recruitment variables.
Figure 1 (top) plots the effector/target lysis data from ref. 6 for

NK cells, along with our simulated model curves. The ligand-
transduced tumor cells are lysed at a higher rate by NK cells than
those that are control transduced. The two values of NK-lysis
parameter c estimated from the two sets of data accurately
reproduce the effects of this ligand transduction.
In Fig. 1 (middle), effector/target lysis data and simulations for

the CD8+ T cells are presented. For our experiments, four CD8+

T-cell lysis parameters were determined through fitting to the
four ligand transduction data sets of ref. 6, and these are all able
to capture the different experimental outcomes. For brevity, only
the two cases representing priming and rechallenge with control-
transduced cells and priming and rechallenge with ligand-
transduced cells are presented in Fig. 1. Figure 1 (middle) plots
the experimental data against the mathematical model prediction
using the best-fit parameter values for both the power form and
the new rational form of the competition term. Note that in Fig. 1
(middle, left) in which we compare fits to data for non-ligand-
transduced cells, although the difference between the fit achieved
by the traditional power kill law and that achieved by the new
rational kill law is not clearly visible, the numerical difference in
the error term is present. This can be seen in Fig. 1 (bottom, left).
Here, we plot the numerical errors between the predictions and
the data, allowing a comparison between the goodness-of-fit of
the power form and the goodness-of-fit of the rational form of
the competition term. In the right panel of the center row, the
superiority of the fit achieved by the rational kill law over the
power kill law is visible and striking. Similarly, the numerical
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error bars of the bottom panel, right side, reflect the much
smaller error achieved by the rational kill law. It seems that it is
critical to employ the rational law to fit ligand-transduced cell
data, whereas the use of either the rational or the power law for
non-ligand-transduced data will give us an acceptable fit. This
may indicate that the more effective the immune cells are at
lysing their target cells, the more they follow a rational law
dynamic.
New functional forms. In contrast to NK cells, CD8+ T cells

have to be primed to be activated. Therefore, for the CD8+ T cell
to tumor cell competition term, D , there were four different data
sets to be fitted. These came from first priming with either
control-transduced cells or ligand-transduced cells, then chal-
lenging with either control-transduced or ligand-transduced cells.
Experimental data indicated that the least effective combination
was both to prime and to challenge with control-transduced cells,
in which case there was at most 10% lysis. On the other hand, the
most effective combination was to prime and then challenge with
ligand-transduced cells, resulting in a maximum of nearly 70%
lysis. In the model, these cases are distinguished by the estimates
of the parameters d and k , which changed by a factor of up to 5.
Thus, the estimated values of these parameters as components
of the rational cell kill term D may be highly significant fac-

tors distinguishing between tumors that are weakly and strongly
antigenic.
The form for the rational competition term D is mainly

phenomenological in the sense that it models observable
outcomes, not direct underlying mechanisms. It is not immedi-
ately clear what the individual components of D biologically
represent. The use of phenomenological dynamics in modeling
biological processes is quite common and can serve to provide
predictive capabilities in the model. Such descriptive (as opposed
to explanatory) dynamics are frequently used as a foundation on
which to build models of tumor development. For example, see
the comparison of several phenomenological tumor growth
models presented in ref. 28 (p. 239). Perhaps future investigations
may elucidate the underlying mechanisms that give rise to the
form of D .
Validation of model with human data. To validate the

fundamental model dynamics with respect to the new rational
form of the tumor-specific cell lysis term, we did another
comparison of power-law versus rational law predictions, this
time using human (CD8+ T)-tumor lysis data. Figure 2 shows the
results of this comparison. The top graph shows the power-law
predictions plotted against (CD8+ T)-tumor lysis data for two
separate patients. It is clear that the power-law prediction does

Table 1. Estimated mouse parameters

Parameters Units Estimated value Description Source

a day�1 5.14 � 10�1 Tumor growth rate (6)

b cell�1 1.02 � 10�9 1/b is tumor carrying capacity (6)

c(n) cell�1 day�1 3.23 � 10�7 Fractional (non)-ligand-transduced
tumor cell kill by NK cells

(6)
c(l) 3.50 � 10�6

d(nn) day�1 1.43 Saturation level of fractional

tumor cell kill by CD8+ T cells.
nn , nl , ln , ll: primed with

(non)-ligand-transduced cells,

challenged with (non)-ligand-transduced cells.

(6)

d(nl) 3.60
d(ln) 3.51

d(ll) 7.17

k(nn) None 5.80 � 10�1 Exponent of fractional tumor
cell kill by CD8+ T cells. nn, nl, ln, ll:

primed with (non)-ligand-transduced cells,

challenged with (non)-ligand-transduced cells.

(6)
k(nl) 4.60 � 10�1

k(ln) 9.00 � 10�1

k(ll) 7.50 � 10�1

s(nn) None 2.73 Steepness coefficient of the Tumor-(CD8+ T cell)
competition term. nn, nl, ln, ll: primed with

(non)-ligand-transduced cells, challenged

with (non)-ligand-transduced cells

(smaller s)steeper curve)

(6)
s(nl) 1.61

s(ln) 5.07

s(ll) 4.00 � 10�1

r cells day�1 1.30 � 104 Constant source of NK cells. (10)

f day�1 4.12 � 10�2 Death rate of NK cells. (10)

g(n) day�1 2.5 � 10�2 Maximum NK cell recruitment rate by
(non)-ligand-transduced tumor cells.

(10, 6)
g(l) 4g(n) = 2 � 10�1

h cell2 2.02 � 107 Steepness coefficient of the NK cell recruitment curve (10)

p cell�1 day�1 1.0 � 10�7 NK cell inactivation rate by tumor cells (6)

m day�1 2.0 � 10�2 Death rate of CD8+ T cells (27)
j(nn) day�1 3.75 � 10�2 Maximum CD8+ T-cell recruitment rate. nn, nl, ln, ll:

primed with (non)-ligand-transduced cells, challenged

with (non)-ligand-transduced cells.

(10, 6)

j(nl) 3.75 � 10�2

j(ln) 3j(nn) = 1.13 � 10�1

j(ll) 8j(nn) = 3.0 � 10�1

k cell2 2.02 � 107 Steepness coefficient of the CD8+ T-cell recruitment curve (10, 6)

q cell�1 day�1 3.42 � 10�10 CD8+ T-cell inactivation rate by tumor cells (10)

r cell�1 day�1 1.1 � 10�7 Rate at which tumor-specific CD8+ T cells are

stimulated to be produced as a result of
tumor cells killed by NK cells

(27, 29)

Mathematical Modeling of Immune Response to Tumor
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not fit the data particularly well. On the other hand, the bottom
graph shows the prediction using our newly introduced rational
law. In this case, the model can predict cell lysis quite accurately,
even when applied to this human data set.
For this particular set of data, effector cells are fairly efficient at

lysing tumor cells, with a maximum lysis rate of around 60%. Note
that, as with the ligand-transduced mouse data, the difference

between the power law and rational law models is quite
pronounced, once again indicating that the rational law model is
particularly well suited to simulating cases in which effector cell
lysis rates are relatively strong.
It is necessary in each case to find the parameters which will

describe the particular type of tumor-immune interaction under
study. The two data sets pictured here underline a feature

Figure 1. Comparison of mathematical cell lysis laws (power law versus rational law). Top, NK cell lysis. The top graph shows mathematical predictions from the
model (smooth curves ) plotted along with actual experimental data (squares and circles ) from ref. 6 on RMA cells. The shallow curve predicts lysis percentages for the
control cells, whereas the steep curve predicts lysis percentages for the ligand-transduced cells. Middle, CD8+ T-tumor cell lysis. The second row of graphs plots
experimental data points (circles and squares ) taken from ref. 6 against mathematical cell lysis predictions (solid lines). The two graphs on the left plot the power law
prediction and the rational law prediction against lysis data for tumor cells of which primary and secondary challenges were with control-transduced tumor cells
(RMA cells). The two graphs on the right plot the power law and rational law predictions against lysis data for tumor cells of which primary and secondary challenges
were with ligand-transduced cells (RMA cells transduced with Rae1h ligand). Bottom, the bar chart in the bottom row plots the residuals (errors) for the same two
data sets (CD8+ T-cell lysis of control-transduced and ligand-transduced tumor cells). The height of each bar shows the value predicted by the power and rational laws,
minus the experimental data values at each effector/target ratio point. The difference between the power law and rational law models is most pronounced in the
ligand-transduced case, in which the effector cells are far more efficient at lysing tumor cells.

Cancer Research
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inherent in the modeling process: there is a wide variety of cell
behavior between any two different patients. Care must therefore
be taken in making sweeping statements about specific responses
to treatments, and any quantitative information must be
interpreted as one possibility, and not as a firm predictor in
any given case. However, a large set of simulations, along with
some analysis of the sensitivity of the model to parameter
fluctuations, can certainly provide a general picture of possible
behaviors under certain conditions. Further comparisons may
lead to new insights into the nature of the differences between
different tumor types, as well as different immunotherapeutic
protocols.
Sensitivity analysis using human variables. To discover which

components of the model contribute most significantly to
determining final tumor size, we did a sensitivity analysis. Model

sensitivity was assessed by measuring the effect of small variable
changes on the final volume of the tumor as represented by a
simulation of system evolution over 25 days. Because ultimately we
are interested in predicting a patient’s response to immunotherapy
treatment, we used human data for the sensitivity study. In parti-
cular, the variable set from patient 9, available in ref. 7, and for
whom lysis data are plotted with squares in Fig. 2, was used as the
base point. Each parameter was perturbed from its estimated value
by 1%, and the corresponding percent change in final tumor
volume was calculated.
The results of this parameter sensitivity analysis for the mathe-

matical model are shown in Fig. 3. The system in this case is found
to be most sensitive to the exponent in the CD8+ T lysis term, k , as
well as to the tumor growth variable a . This suggests that, in
addition to the aggressiveness of the tumor, as represented by
growth variable a , even very small changes in the cytolytic
effectiveness of tumor-specific T cells, as represented by shifts in
the value of k , can affect clinical outcome. This would indicate that
any treatment which might enhance this effectiveness should
aggressively be pursued. By contrast, the size of the tumor after 25
days is not very sensitive to the NK cell competition variable c .
According to this model then, the cytolytic activity of the NK cell
population alone is not a determining factor in the eventual size of
the tumor, and should be considered in conjunction with CD8 cell
activity.
Model simulations with mouse variables: vaccination and

thresholds for immune efficacy. The simulations show what this
model would predict under three different experimental scenarios
similar to those reported in ref. 6. These simulations explain some of
the reported experimental observations (see ref. 6, Figs. 2 and 3, p.
167-8). Ligand-transduced cells stimulate the immune response
sufficiently to control tumor growth (Fig. 4, top right), whereas
control-transduced tumor cells escape immune defenses (Fig. 4, top
left). In Fig. 4 (top left), the immune system is rechallenged at day 10
after priming with control-transduced cells, and the tumor escapes
surveillance. In Fig. 4 (top right), the immune system is again
rechallenged at day 10 with control-transduced cells, but the pri-
mary challenge was with ligand-transduced cells. This simulation
shows that the tumor is controlled, indicating the development of

Figure 3. This analysis shows that the tumor size is most sensitive to the CD8+

T-cell kill variable k , as well as to the tumor growth rate variable a .

Figure 2. Model validation using human data from ref. 7. Presented here
is a comparison between the power-law and the rational law for human
(CD8+ T)-tumor lysis, as was done in Fig. 1 for mouse data. In each graph, two
separate simulations are plotted along with data from two different patients who
experienced regression of melanoma after receiving TIL treatment. The data
show results of cytotoxicity assays with TILs taken 7 days after cell transfer. The
model predictions are represented by the smooth curves, whereas the
experimental data are represented by squares for patient 9 and triangles for
patient 10. Note, once again, that the rational law for predicting (CD8+ T)-tumor
lysis rates as a function of the effector/target ratio (as depicted in the bottom
graph) provides a much better fit to the experimental data than does the
power-law (as depicted in the top graph).
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immunity. Changing ligand levels on the cells requires changes to
the model parameters d, k , and s (all the parameters involved in
the rational T-cell kill term D), as well as c (strength of NK cell kill),
g (NK cell recruitment rate), and j (CD8+ T-cell recruitment rate).
Numerical values for these parameters with varying ligand levels
are provided in Table 1.
Simulations generated by a validated mathematical model can

be used to detect thresholds for immune efficacy. In Fig. 4 (bottom),
we reproduce with a computational solution of our mathematical
model the qualitative results of three sets of experiments that were
presented in Fig. 2 of ref. 6 (p. 167). For the experiments in ref. 6,
groups of mice were challenged with either 104, 105, or 106 ligand-
transduced tumor cells, then tumor establishment was tracked. For
our in silico simulations, we also challenge the mathematical
system with these three levels of tumor cells. Figure 4 (bottom left)
shows simulated tumor cell growth over time in response to these
three initial levels of tumor burden in the absence of CD8+ T-cell
activity, reflecting the experiments in which the mice were depleted
of CD8+ T cells. This simulation represents a system lacking a

strong antigen-specific immune response. The system can control
a small tumor, but tumor challenges of 105 cells or more escape
immune system control.
Figure 4 (bottom center) shows simulated tumor growth

outcomes for the same three experiments done in the absence of
NK cells, reflecting the experiments with mice depleted of NK cells.
The system is now able to control initial tumor burdens of up to
105 cells, but a larger challenge of 106 cells escapes immunosur-
veillance.
Figure 4 (bottom right) shows simulated results with both NK

and CD8+ T cells active, reflecting the experiments on mice with
intact immune systems. With both the NK cells and the CD8+

T cells working together, initial tumor burdens of up to 106 cells are
controlled.

Discussion

This model incorporates tumor-immune interaction terms of a
form that is qualitatively different from those commonly used. This

Figure 4. Simulations of (tumor cell)-(NK cell)-(T cell) mutual interactions over time. Top left, system evolution with control-transduced primary inoculation. Ineffective
response by NK cells and CD8+ T cells to non-ligand-transduced challenge. Top right, system evolution with ligand-transduced primary inoculation. Effective response
by NK and CD8+ T cells to non-ligand-transduced challenge following priming with ligand-transduced cells. Both systems are rechallenged with control-transduced
cells after 10 days. Bottom, the simulations presented in these graphs are based on data provided in ref. 6. In each of the three cases, tumor growth is plotted over
time starting with three different initial tumor challenges: 104, 105, and 106 cells. In the plots, cell populations are converted to mean surface values. Bottom left,
simulation of tumor-NK interactions in a system with CD8+ T cells depleted. The simulation shows that in the absence of CD8+ T cells, only a tumor inoculation of up
to 104 cells is suppressed, whereas larger challenges escape immunosurveillance. Bottom center, simulation of tumor-(CD8+ T cell) interactions in a system with
NK cells depleted. The simulation shows that in the absence of NK cells, tumor inoculations of up to 105 cells are suppressed, whereas a larger challenge of 106 cells
escapes immunosurveillance. Bottom right, simulation of tumor-(CD8+ T)-NK interactions in a system with all immune components intact. Note that the maximum
mean tumor surface area achieved in this plot is only 6 mm2, as compared with 300 mm2 in the previous two plots. Tumor populations of this small size are not clearly
visible in the data plots provided in Fig. 2 of ref. 6 (p. 167). The simulation shows that when both NK cells and CD8+ T cells are present, tumor inoculations of up to
‘106 cells are suppressed.
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form provides a good fit with experimental data resulting from
priming and rechallenge with different combinations of tumor cell
types. The mathematical model suggests the value in continuing to
research the mechanisms by which NK cells and CD8+ T cells
induce tumor cell lysis. The functional descriptions presented in
this article suggest that further laboratory tests may aid in
determining why the two types of immune cells give rise to such
different cell interaction dynamics. We hypothesize that the more
effective the immune cell kill is, the more closely it follows a
rational law dynamic.
The model currently includes no self-regulatory terms in the

equations or down-regulation of an activated immune response.
We have yet to resolve this issue in our model, but it is currently
receiving active attention. Although the current model does not
address all processes of the immune system, it does, despite its
simplicity, fit the empirical data.
These experimental and simulated results, observed together

with the cell lysis data presented and the parameter sensitivity
analysis, highlight the importance of CD8+ T cell activation on final
outcome. Model results seem to indicate that to promote tumor

regression, it may be necessary (although perhaps not sufficient) to
focus on increasing CD8+ T cell activity. In fact, we propose that
there may be a direct positive correlation between the patient-
specific efficacy of the CD8+ T cell response, as measured by
cytotoxicity assays, and the likelihood of a patient favorably
responding to immunotherapy treatments.

Appendix A. Nomenclature and parameter values

Here we list all of the parameters used in the model, their
meaning and the estimated values. The first set of data in Table 1
reflects the experiments run to simulate the mouse experiments
from ref. 6. The second set of data in Table 2 applies to the human
data from ref. 7.
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Table 2. Estimated patient-specific human variables

Patient 9 Patient 10 Source

a = 5.14 � 10�1 a = 5.14 � 10�1 Estimated from ref. 6

b = 1.02 � 10�9 b = 1.02 � 10�9 Estimated from ref. 6

c = 3.23 � 10�7 c = 3.23 � 10�7 Estimated from data in refs. 7 and 6
d = 5.80 d = 4.23 Fit to data from ref. 7

r = 1.3 � 104 r = 1.3 � 104 Variable from ref. 10

k = 1.36 k = 1.43 Fit to data from ref. 7
f = 4.12 � 10�2 f = 4.12 � 10�2 Variable from ref. 10

g = 2.5 � 10�2 g = 2.5 � 10�2 Estimated from data in refs. 7 and 6

h = 2.02 � 107 h = 2.02 � 107 Variable from ref. 10

j = 3.75 � 10�2 j = 3.75 � 10�2 Estimated from data in refs. 7 and 6
k = 2.0 � 107 k = 2.0 � 107 Estimated from data in refs. 7 and 6

m = 2.00 � 10�2 m = 2.00 � 10�2 Estimated from data in ref. 27

q = 3.42 � 10�10 q = 3.42 � 10�10 Estimated from data in ref. 10

p = 1.00 � 10�7 p = 1.00 � 10�7 Estimated from data in ref. 6
s = 2.5 � 10�1 s = 3.6 � 10�1 Fit to data in ref. 7

r = 1.1 � 10�7 r = 1.1 � 10�7 Estimated from data in refs. 27 and 29
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