Beamer
(up up and away)

Kathleen Holm

program in Applied Math,
University of Arizona

8 Nov 2006, SWIG
Outline
Features of beamer

- Complicated, elegant templates
- Viewers can see the progress of the presentation
- Nice boxes for theorems, definitions, etc.
- With extra options and goodness comes complication
Features of beamer

- Complicated, elegant templates
- Viewers can see the progress of the presentation
- Nice boxes for theorems, definitions, etc.
- With extra options and goodness comes complication
Features of beamer

- Complicated, elegant templates
- Viewers can see the progress of the presentation
- Nice boxes for theorems, definitions, etc.
- With extra options and goodness comes complication
Features of beamer

- Complicated, elegant templates
- Viewers can see the progress of the presentation
- Nice boxes for theorems, definitions, etc.
- With extra options and goodness comes complication
\documentclass[options]{beamer}
\mode<presentation>
{
 \usetheme[options]{ name }
 \usecolortheme[options]{ name }
}
\title{Title of Presentation}
\subtitle{}
\author{Author’s name}
\institute{University of Arizona}
.tex file Setup

\begin{document}
\begin{frame}
\titlepage
\end{frame}

\section*{Outline}
\begin{frame}
\tableofcontents
\end{frame}

...
\section{Name of Section}
\subsection{...}
\begin{frame}
 \frametitle{slide’s title}
 content of slide
\end{frame}

\section{Another Section}
...
\end{document}
First point
 - Second point, however...
 - If this,
 - then That!
 - Therefore, Third point,
 - Fourth point

Summary
 - The final point
 - Last thing to say
First point

Second point, however...
 ▶ If this,
 ▶ then That!

Therefore, Third point,

Fourth point

Summary

The final point

Last thing to say
First point

Second point, however...
 ▶ If this,
 ▶ then That!

Therefore, Third point,

Fourth point

Summary

The final point

Last thing to say
First point

Second point, however...
 - If this,
 - then That!

Therefore, Third point,

Fourth point

Summary

The final point

Last thing to say
First point

Second point, however...
 ▶ If this,
 ▶ then That!

Therefore, Third point,

Fourth point

Summary
 ▶ The final point
 ▶ Last thing to say
Creating overlays

\begin{itemize}
\item First point.
\pause
\item Second point, however...
 \begin{itemize}
 \item If this,
 \pause
 \item then That!
 \end{itemize}
\item Therefore, Third point,
\pause
\item Fourth point
\end{itemize}
\end{itemize}

...
Creating overlays

...

Summary

\begin{itemize}
\onslide
\item The final point
\pause
\item Last thing to say
\end{itemize}
One more time

▶ First point
▶ Second point, however...
 ▶ If this,
 ▶ then That!
▶ Therefore, Third point,
▶ Fourth point

Summary
▶ The final point
▶ Last thing to say
One more time

- First point
- Second point, however...
 - If this,
 - then That!
- Therefore, Third point,
- Fourth point

Summary
- The final point
- Last thing to say
One more time

- First point
- Second point, however...
 - If this,
 - then That!
- Therefore, Third point,
- Fourth point

Summary

- The final point
- Last thing to say
One more time

- First point
- Second point, however...
 - If this,
 - then That!
- Therefore, Third point,
- Fourth point

Summary

- The final point
- Last thing to say
One more time

- First point
- Second point, however...
 - If this,
 - then That!
- Therefore, Third point,
- Fourth point

Summary
- The final point
- Last thing to say
Theorems, Definitions, Proofs,...

- Beamer supports environments to make professional looking theorems
- Also in a block style
- Unfortunately, not available for demonstration at this time
Theorems, Definitions, Proofs,...

- Beamer supports environments to make professional looking theorems
- Also in a block style
- Unfortunately, not available for demonstration at this time
example of what we want

Definition
The Riemann Zeta function is defined, for all \(s \in \mathbb{C} \), by

\[
\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s} = \prod_{p \in \mathbb{P}} \frac{1}{1-p^{-s}}
\]

Riemann’s Hypothesis
All non-trivial zeros of \(\zeta(s) \) have real part one-half.

Sketch of proof
example of what we want

Definition

The Riemann Zeta function is defined, for all \(s \in \mathbb{C} \), by

\[
\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s} = \prod_{p \in \mathbb{P}} \frac{1}{1-p^{-s}}
\]

Riemann’s Hypothesis

All non-trivial zeros of \(\zeta(s) \) have real part one-half.

Sketch of proof
Definition
The Riemann Zeta function is defined, for all $s \in \mathbb{C}$, by

$$\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s} = \prod_{p \in \mathbb{P}} \frac{1}{1-p^{-s}}$$

Riemann’s Hypothesis
All non-trivial zeros of $\zeta(s)$ have real part one-half.

Sketch of proof
Dividing the space with Columns

Bifurcation

Diagram for

\[x_{n+1} = rx_n(1-x_n^2) \]
the Columns Environment

\begin{frame}
\begin{columns}[options] % opt for alignment, example: ’t’
\column{width of col 1}
stuff
\column{width of col 2}
stuff
...
\end{columns}
\end{frame}
Outline
Conclusions

- Beamer has the most functionality, and changable options
- Something for everyone: simplicity vs complexity, visually boring vs stylish
- Will require some research on documentation and patience.
For more information:

To download, see examples, etc..
http://latex-beamer.sourceforge.net/

For Documentation:
Search the web for beameruserguide.pdf