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Exercises for Equation Development Module

1. Purpose: To interpret model equations biologically and to go through the preliminary steps of
qualitative analysis.
This model is derived from the paper by Panetta ([Pan96]). It is developed further in the Projects.

Exercise: Another simple model of tumor/host interaction describes the growth of two populations,
each growing according to a logistic law and competing with each other for resources. In this model,
we lump together all non-tumor cells which are at the tumor site, including normal tissue as well as
immune cells. We do not assume a constant source of immune cells.

Let X(t) denote the normal cell population at time t, (including immune cells), and let Y (t) denote
the tumor cell population at time t. The system of differential equations which describes the model
is:

dX

dt
= a1X(1 − b1X) − c1XY

dY

dt
= a2Y (1 − b2Y ) − c2XY

(a) What is the biological interpretation of each of the parameters a1, a2, b1, b2, c1, and c2? Are they
all necessarily positive or negative?

(b) Describe hypothetical experiments which would allow the determination of these parameters.

(c) Determine the nullclines of this system. Use these nullclines to sketch a few representative phase
portraits. Find and label all of the equilibria.

(d) What condition must the parameters satisfy in order that the tumor-free equilibrium be stable?

Solution:

(a) The biological interpretation of the parameters is as follows:

a1, a2 : Growth rates of the normal and tumor cells

b1, b2 : Carrying capacity of the normal and tumor cells

c1, c2 : Competition rate parameters of the normal and tumor cells

They are all necessarily positive since the specified system of equations has the required negative
signs to account for decrease in numbers wherever necessary.

(b) The growth rate could be determined by examining a fixed number of cells (normal and tumor
cells in different dishes) with an infinite nutrient supply, while the carrying capacity could
be determined by by a similar experiment in which the nutrient supply was limited. The
competition rate parameters may be determined using an assay procedure. This involves setting
up different ratios of tumor cells to normal cells, wherein the normal cells take in a fixed amount
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of chromium. Varying amounts of tumor cells will kill proportional amounts of normal cells and
release chromium, which is then measured using centrifugation and other processes. Thus the
parameters c1 and c2 may be determined.

(c) The four cases that result depend on parameters are shown in Figure 1 (adapted from Boyce
and DiPrima, Sixth Edition).

Figure 1: The various cases for the competing species system

(d) For the case that the tumor-free equlibrium (1/b1,0) is to be stable, linearize about this equilib-
rium point (X = 1/b1 + ǫu and Y = 0 − ǫv, where ǫ is small compared to 1/b1) to obtain,

(

u′

v′

)

=

(−a1 − c1

b1
0 a2(1 − c2

b1a2

)

) (

u
v

)

.

It is now seen that the tumor cannot recur if the eigenvalue 1 − c2/b1a2 is negative, and thus
the condition for the tumor-free equilibrium to be stable is

c2

b1a2
> 1.
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2. Purpose: To explore another model equation using a more complicated tumor growth function, in
an attempt to include the effects of angiogenesis.
The comparison of tumor growth curves is, continued in the Projects, using published data. See also
Exercise 3. Research on tumor angiogenesis is a hot topic, and a literature search on current theories
and proposed mechanisms would be an interesting research project.

Exercise: It has been observed both in vivo and in vitro that solid tumors experience an initial
period of quick growth,followed by a period when growth slows or stops, follwed by another period
of growth. It has been suggested that the first period of growth is during the ‘avascular’ phase, when
the tumor has not yet developed any internal vasculature, so that the cells must acquire nutrients
through diffusion from outside the tumor. Once the tumor reaches a certain size, the tumor cells
release ‘angiogenic growth factors’, which stimulate the growth of blood vessels towards the tumor,
and finally reaching into the interior of the tumor. After the tumor has been ‘vascularized’, another
period of growth occurs.

In this exercise, the angiogenic process will be modelled by a drastic slowing in the growth rate when
the tumor reaches a certain size, denoted by Ta.

(a) Sketch a graph of a possible growth function, F (T ) = dT
dt , which is positive for 0 < T < TMAX,

and is very small for T near Ta < TMAX. In the spirit of generating tractable models, the
function should be as simple as possible, within the prescribed constraints.

(b) Write a differfential equation for T (t), after writing an equation for the function F (T ) you
graphed in 2a.

(c) Solve the differential equation in part 2b, and compare the result to logisitc tumor growth by
plotting solution curves for the two types of growth, using the same initial conditions. (De-
pending on the form of F (T ), you may or may not be able to find an explicit solution for the
differential equation. If an explicit solution is not available, use a numeric solver.) The compar-
ison will be most meaningful if the same initial growth rates (when T is close to zero), and the
same carrying capacity are used.

Comment on the effect of varying the tumor size during vascularization, i.e. TMAX.

Solution:

(a) Within the prescribed constraints of the growth function F (T ) = dT
dt , three different graphs

(F1(T ), F2(T ), F3(T )) are shown, each increasing in complexity. Any one of these graphs (and
others not shown here) would be a sufficient answer to this question. These solutions will follow
through and individually examine these graphs parts (b) and (c) of the question.
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Figure 2: F1(T ) - The simplest graph possible given the prescribed constraints.
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Figure 3: F2(T ) - A slightly more complicated graphical representation for Exercise 2a.
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Figure 4: F3(T ) - An even more complex possible graphical representation for Exercise 2a.

(b) The equations for (F1(T ), F2(T ), F3(T )) respectively are:

F1(T ) =

{

k 0 ≤ T < Ta

ǫk Ta ≤ T ≤ TMAX

F2(T ) =

{

k 0 ≤ T < Ta
k(TMAX−T )
TMAX−Ta

Ta ≤ T ≤ TMAX

F3(T ) =
k

2
(1 − tanh(10(T − Ta)))

Finding an explicit solution, T (t), for each of F1(T ), F2(T ) and F3(T ) is difficult, so a numerical
solver is used. The solution found was used to plot the comparative graphs in part (c).

(c) The solution curves of F1(T ), F2(T ) and F3(T ) (thin line) compared to that of logistic tumor
growth FG(T ) = dT

dt = aT (b − T ) (thick line) can be seen in Figure 5, 6 and 7 respectively. In
these plots, Ta = 0.8, TMAX = 1 and t = 0..70.

Varying the tumor size during vascularisation only seems to change the length of time taken to
grow to TMAX . No other changes could be detected.
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Figure 5: A comparison between F1(T ) and the logistic equation, FG(T ). Upon inspection, it can be
seen that F1(T ) closely follows the behavior of the logistic equation everywhere except for the region from
approximately t = 1 to t = 3.
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Figure 6: A comparative plot between F2(T ) and the logistic equation. The behaviour of F2(T ) is quite
similar to that of the logistic equation, however there is a slightly more noticeable difference in behavior
for the region t = 1 to t = 2.
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Figure 7: Plotting F3(T ) with the logistic equation finds that its behavior varies greatly with that of the
logistic equation.

6



3. Purpose: To come up with a model equation using a different tumor growth function. The solutions
are compared with those derived from the logistic growth law.
The comparison of tumor growth curves is, continued in the Projects, using published data. See also
Exercise 2

Exercise: It has been observed that in certain tumors grown in vitro only a thin layer of cells on the
tumor’s surface are actually proliferating.

Consider a perfectly spherical tumor, and let T (t) denote the tumor population at time t.

(a) Write a differential equation for T (t), assuming that only the cells on the surface of the sphere
proliferate. (Assume that the number of cells, T , is proportional to volume, but that the number
of proliferating cells is proportional to the surface area of the sphere. You’ll need to express the
number of proliferating cells as a function of T .) This is known as “Von Bertalanffy” growth.

(b) Solve the differential equation in part 3a, and compare the result to exponential tumor growth
by plotting solution curves for the two types of growth, using the same initial conditions.

(c) Add a growth-limiting term to the differential equation in part 3a, analagous to the overcrowding
term in the logistic growth equation. Again, compare numerical simulations of the two systems
for, using the same initial conditions, the same proliferation rate, and the same initial conditions.

Solution:

(a) Since the only proliferating cells are those on the surface of the sphere, and that the number of
cells T is proportional to the volume V of the sphere, we find

T = kV

, where k is a constant. Now since the number of proliferating cells, P is proportional to the
surface area of the sphere, we get

P = k24πR(t)2

where k2 is a constant and R(t) is the radius of the sphere as a function of time, t. Recalling
that the volume of a sphere is given by V = 4

3πR(t)3, rearrange for R(t) and substitute into

proliferating cells equation to find that P = k24π( 3
4π V )( 2

3 ). The differential equation for T (t),
assuming that only the cells on the surface of the sphere proliferate, can now be written as

dT

dt
= kT

2

3 .

(b) Solving the differential equation in part 3a, we find that

T (t) =

(

kt

3
+ C1

)3

where C1 is a constant of integration. Figure 8 plots this solution (thin line) and compares it
with the solution curve for the exponential tumor growth (thick line), with k = 1.

(c) The addition of a growth limiting term to the differential equation in part 3a, analogous to
the overcrowding term in the logistic growth equation, finds that the differential equation now
becomes

dT

dt
= kT

2

3 (1 − bT ).

Figure 9 plots the numerical solution to this equation (thin line) and compares it to the solution
curve of the logistic growth equation (thick line), with k = 1 and b = 1

100 .
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Figure 8: The solution curves for Exercise 3b.
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Figure 9: The solution curves for Exercise 3c.
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4. Purpose: Compare the tumor-immune model using Von Bertalanffy growth to the one presented in
class using a qualitative analysis.
See Exercise 3

Exercise: Use the Von Bertalanffy model of tumor growth in the absence of an immune response:

dT

dt
= aT 2/3(1 − bT ).

Add the immune population, with competition and response terms identical to those used in the
model presented in class. Draw nullclines, determine the number of possible equilibria and their
stability. Does the qualitative behavior differ from that of the model presented in class? If so, how?

Recall the system of equations presented in class: T denotes tumor cells, and E denotes effector
(cytotoxic immune) cells. The equations are

dE

dt
= s +

pET

g + T
− dE − mET

dT

dt
= aT (1 − bT ) − cET

Solution:

The Von Bertalanffy model of tumor growth in the presence of an immune population, competi-
tion and response terms identical to the those used in class finds the system of equations to be

dE

dt
= s +

pET

g + T
− dE − mET

dT

dt
= aT 2/3(1 − bT ) − cET

where s, p, g, d,m, a, b, c are constants, T denotes tumor cells and E denotes effector (cytotoxic im-
mune) cells. The T nullclines are found to be at

T = 0

E =
a(1 − bT )

cT
1

3

,

and the E nullcline is at

E =
s(g + T )

(d + mT )(g + T ) − pT
.

These nullclines are plotted in Figure 10. There are 2 possible equilibria for this system. One is

located at (T,E) = (0, s
d ), while the other is at E = a(1−bT )

cT
1

3

given that T is a solution of the

nonlinear equation a(1−bT )

cT
1

3

= s(g+T )
(d+mT )(g+T )−pT , which can be solved numerically using, for example,

the Newton-Raphson Method.

The Jacobian for the system at (T,E) = (0, s
d ) is singular, hence the stability of the equilibrium

point cannot be determined using linear stability analysis. From Maple plots, it appears that this
equilibrium point is a saddle with an extremely unstable manifold. The stability of the other equi-
librium point is also difficult to determine, however using Maple, it is found to be a stable node.
The parameter values used to determine the stability of these points are the same as those used in
the Kuznetsov paper [KMTP94]. The qualitative behaviour of the model differs slightly to the one

presented in class due to the T
2

3 term in the Von Bertalanffy equation. The equilibria at A and B
in the model presented in class still exist in this model, however due to the behaviour of the term
mention above, the two equilibria at C and D no longer exist.
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Figure 10: The T nullclines (thick line) and E nullcline (thin line) for Exercise 4.
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Exercises for Qualitative Analysis Module

1. Purpose: To study non-linear centers.
Notes: Define a reversible system to be any second-order system that is invariant under t → −t
and y → −y. For example, any system ofthe form

ẋ = f(x, y)

ẏ = g(x, y),

where f is odd in y and g is even in y(i.e., f(x,−y) = −f(x, y) and g(x,−y) = g(x, y)) is reversible.

Theorem: (Nonlinear centers for reversible systems) Suppose the origin x∗ = 0 is a linear center for
the continously differentiable system

ẋ = f(x, y)

ẏ = g(x, y),

and suppose that the system is reversible. Then sufficiently close to the origin, all trajectories are
closed curves. from[Str94], Example 6.6.1

Exercise: Show that the system

ẋ = y − y3

ẏ = −x − y2

has a nonlinear center at the origin, and plot the phase portrait.

Solution: For the system
ẋ = y − y3 = f(x, y)

ẏ = −x − y2 = g(x, y)

the fixed point x∗ is (0, 0). Compute the Jacobian for the system and evaluate it at the fixed point,

A =

[

0 1 − 3y2

−1 −2y

]

∣

∣

∣

∣

∣

(0,0)

=

[

0 1
−1 0

]

.

The eigenvalues of A are i and −i; purely imaginary eigenvalues are characteristic of a center; thus
x∗ = 0 is a center. To show that the system is reversible, consider

f(x,−y) = −y − (−y)3 = −y + y3 = −(y − y3) = −f(x, y)
g(x,−y) = −x − (−y)2 = −x − y2 = g(x, y)

which illustrates that f is odd in y and g is even in y. Thus all trajectories sufficiently close to the
origin are closed curves. The phase portrait is shown in Figure 11.
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Figure 11: Phase plot of system for Problem 1
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2. Purpose: To study fixed points and linearizations. From [Str94], 6.3.

Excercise: For each of the following systems, find the fixed points, classify them, sketch the neigh-
boring trajectories, and try to fill in the rest of the phase portrait.

(a) ẋ = x − y, ẏ = x2 − 4

(b) ẋ = sin y, ẏ = x − x3

(c) ẋ = 1 + y − e−x, ẏ = x3 − y

(d) ẋ = y + x − x3, ẏ = −y

(e) ẋ = sin y, ẏ = cos x

(f) ẋ = xy − 1, ẏ = x − y3

Solution:
For the following systems, the fixed points are found by solving ẋ = 0, ẏ = 0. The linearized system
about the fixed point(s) is obtained by evaluating the Jacobian at those point(s). The eigenvalues
of the resulting matrix are used to classify the fixed point(s). The phase portrait for each system in
shown in the solution to Exercise 3.

(a) ẋ = x − y, ẏ = x2 − 4

The fixed points are (2, 2) and (−2,−2). The Jacobian of the system is

[

1 −1
2x 0

]

. Classifying

the fixed points using the eigenvalues,

(2, 2) :

[

1 −1
4 0

]

. Eigenvalues are 1
2 ± 1

2I
√

15, and thus (2, 2) is an unstable spiral.

(−2,−2) :

[

1 −1
−4 0

]

. Eigenvalues are 2.5616 and −1.5616, and thus (−2,−2) is a saddle

point.

(b) ẋ = sin y, ẏ = x − x3

The fixed points are (0, nπ), (0, (2n + 1)π), (1, nπ), (1, (2n + 1)π), (−1, nπ), and (−1, (2n +

1)π). The Jacobian of the system is

[

0 cos y
1 − 3x2 0

]

. Classifying the fixed points using the

eigenvalues,

(0, nπ) :

[

0 1
1 0

]

. Eigenvalues are 1 and −1, and thus (0, nπ) is a saddle point.

(1, nπ), (−1, nπ) :

[

0 1
−2 0

]

. Eigenvalues are I
√

2 and −I
√

2, and thus a fixed point of this

form is a center.

(0, (2n + 1)π) :

[

0 −1
1 0

]

. Eigenvalues are I and −I, and thus (0, (2n + 1)π) is a center.

(1, (2n + 1)π), (−1, (2n + 1)π) :

[

0 −1
−2 0

]

. Eigenvalues are
√

2 and −
√

2, and thus a fixed

point of this form is a center.

(c) ẋ = 1 + y − e−x, ẏ = x3 − y

The only fixed point is (0, 0). The Jacobian of the system is

[

e−x 1
3x2 −1

]

. Classifying the fixed

points using the eigenvalues,

(0, 0) :

[

1 1
0 −1

]

. Eigenvalues are 1 and −1, and thus (0, 0) is a saddle point.

(d) ẋ = y + x − x3, ẏ = −y

The fixed points are (0, 0), (1, 0), and (−1, 0). The Jacobian of the system is

[

1 − 3x2 1
0 −1

]

.

Classifying the fixed points using the eigenvalues,

(0, 0) :

[

1 1
0 −1

]

. Eigenvalues are 1 and −1, and thus (0, 0) is a saddle point.
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(1, 0), (−1, 0) :

[

−2 1
0 −1

]

. Eigenvalues are −2 and −1, and thus (1, 0) and (−1, 0) are stable

nodes.

(e) ẋ = sin y, ẏ = cos x

The fixed points are ((2n + 1)π/2, 2nπ). The Jacobian of the system is

[

0 cos y
− sin x 0

]

.

Classifying the fixed points using the eigenvalues,

([3, 7, 11 . . .]π/2, 2nπ) :

[

0 1
1 0

]

. Eigenvalues are 1 and −1, and thus the fixed point(s) is a

saddle point.

([1, 5, 9 . . .]π/2, 2nπ) :

[

0 1
−1 0

]

. Eigenvalues are I and −I, and thus the fixed point(s) is a

center.

(f) ẋ = xy − 1, ẏ = x − y3

The real fixed points are (1, 1), (−1,−1) and (I,−I). The Jacobian of the system is

[

y x
1 −3y2

]

.

Classifying the fixed points using the eigenvalues,

(1, 1) :

[

1 1
1 −3

]

. Eigenvalues are −3.2361 and 1.2361, and thus (1, 1) is a saddle point.

(−1,−1) :

[

−1 −1
1 −3

]

. Eigenvalues are −2 and −2, and thus (−1,−1) is a stable node.
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3. Purpose: To compare computer generated phase portratis with initial sketches.

Exercise: For each of the nonlinear systems in Exercise 2, plot a computer-generated phase portrait
and compare to your approximate sketch.

Solution:
The required computer-generated phase portrait for each system was created in Maple and are shown
below.
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Figure 12: Phase portrait for Exercise 3a
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Figure 13: Phase portrait for Exercise 3b
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Figure 14: Phase portrait for Exercise 3c
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Figure 15: Phase portrait for Exercise 3d
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Figure 16: Phase portrait for Exercise 3e
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Figure 17: Phase portrait for Exercise 3f
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4. Purpose: To use qualitative arguments to deduce the phase portrait of a system. From [Str94],
Problem 6.6.6

Exercise: Consider the reversible system ẋ = y(1 − x2), ẏ = 1 − y2.

(a) Plot the nullclines ẋ = 0 and ẏ = 0.

(b) Find the sign of ẋ, ẏ in different regions of the plane.

(c) Calculate the eigenvalues and eigenvectors of the saddle points at (−1,±1).

(d) Consider the unstable manifold of (−1,−1). By making an argument about the signs of ẋ, ẏ,
prove that this unstable manifold intersects the negative x-axis. Then use reversibility to prove
the existence of a heteroclini trajectory connecting (−1,−1) to (−1, 1).

(e) Using similar arguments, prove that another heteroclinis trajectory exists, and sketch several
other trajectories to fill in thephase portrait.

Solution:

(a) The nullcline plot of ẋ = 0 and ẏ = 0 can be seen in Figure 18.
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Figure 18: Nullcline plot for Exercise 4a

(b) Figure 19 shows the signs of ẋ, ẏ in the different regions of the plane.
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Figure 19: The sign of ẋ, ẏ in different regions of the plane.
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(c) The fixed points for the system are found by solving ẋ = 0, ẏ = 0. Their values are (1, 1),
(−1,−1), (1,−1) and (−1, 1). The linearized system about these fixed points is obtained by
evaluating the Jacobian at those points, and the eigenvalues and eigenvectors for the each of the
fixed points in which we are interested are found.

The fixed points of interest are (−1, 1) and (−1,−1). The Jacobian of the system is

[

2xy 1 − x2

0 −2y

]

.

The Jacobian at the fixed point (−1, 1) is (−1, 1) :

[

2 0
2 −2

]

. Eigenvalues are λ1 = −2 and

λ2 = 2, and the eigenvectors are e1 = [0, 1] and e2 = [1, 0].

The Jacobian at the fixed point (−1,−1) is (−1,−1) :

[

−2 0
2 2

]

. Eigenvalues are λ1 = −2

and λ2 = 2, and the eigenvectors are e1 = [1, 0] and e2 = [0, 1].

(d) At the fixed point (−1,−1) the signs of ẋ are such that the solutions are kept in towards the
nullcline x = −1 and since the signs of ẏ > 0 the solutions move upwards, for all −1 < y < 0.
The nullcline of ẋ, y = 0 make the solutions move vertically so solutions continue vertically
across the axis. Therefore the manifold intersects the x-axis.
To show that the system is reversible, consider ẋ = y(1 − x2) = f(x, y), ẏ = 1 − y2 = g(x, y).
Now

f(x,−y) = y − x2y = −y + x2y = −y(1 − x2) = −f(x, y)
g(x,−y) = 1 − (−y)2 = 1 − y2 = g(x, y)

which illustrates that f is odd in y and g is even in y. Thus there is existence of a heteroclinic
trajectory connecting (−1,−1) to (−1, 1).

(e) Similarly, at the fixed point (1,−1), the signs of ẋ and ẏ are such that the solutions move
vertically from the fixed point toward the fixed point (1, 1). As already shown above, f is odd
in y and g is even in y so there is the existence of a heteroclinic trajectory connecting (1,−1)
to (1, 1). The phase portrait of the system can be seen in Figure 20.
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Figure 20: Phase portrait of the system in Exercise 4.
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Exercises for Numerics Module

1. Purpose: Determining whether an IVP is well-posed.

Exercise: For each of the following IVPs,determine whether or not it is well-posed, and explain why.

(a) y′ = −5y
y(0) = 1 and 0 < t < 5.

(b) y′ = 2y1/2

y(0) = 0 and 0 < t < 2.

Solution:

(a) Well-posed. The general solution is y(t) = Ce−5t, and here C = 1. f(y) = −5y, which is
Lipschitz continuous with constant L = 5.

(b) Not well-posed, solution is not unique. Two solutions: y(t) = 0 or y(t) = t2. Furthermore, a
small perturbation in the initial condition, say y(0) = 1.01 results in a significantly different
solution y(t) = t2 ± 0.2t + 0.1.

2. Purpose: Understanding stability of solutions, stability of a numerical method, computing solutions
for Forward and Backward Euler methods.

Note to Instructor: If you have chosen not to present the slides on stability of an ODE solution, you
may wish to skip part (a) of this exercise. From [Hea02, p.417,#9.4].

Exercise: Consider the ODE with y′ = −5y with initial condition y(0) = 1. We will solve this ODE
numerically using a step-size of h = 0.5.

(a) Are solutions to this ODE stable?

(b) Is Euler’s method stable for this ODE using this step-size?

(c) Compute the numerical value for the approximate solution at t = 0.5 given by Euler’s method.

(d) Is the backward Euler (BE) method stable for this ODE using this step-size?

(e) Compute the numerical value for the approximate solution at t = 0.5 given by the backward
Euler method.

Solution:

(a) The solution to this ODE is y(t) = e−5t and is stable since λ = −5 < 0 for the generic ODE
y′ = λy as discussed in class.

(b) Verify that Euler’s method is not stable for this ODE using a step-size of h = 0.5 by computing
the amplification factor which is greater than 1,

|1 + λh| = |1 + (−5)(0.5)| = 1.5 > 1

(c) The numerical value for the approximation solution at t = 0.5 is,

y1 = y0 + hf(t0, y0) = 1 + 0.5(−5(1)) = −1.5

(d) The Backward Euler method is stable for this ODE using a h = 0.5 step-size, and can be verified
by computing the amplification factor,

∣

∣

∣

∣

1

1 − λh

∣

∣

∣

∣

= 0.286 < 1

In fact, the BE method is stable for this ODE for any step size.

(e) The numerical value for the approximate solution using this method at t = 0.5 is,

y1 = y0 + h(−5y1) ⇒ y1 =
y0

1 + 5h
= 0.2857

20



3. Purpose: Comparing results for Forward Euler versus Backward Euler. From [Hea02, p.417,#9.5].

Exercise: With the initial value of y0 = 1 at t0 = 0 and a time step of h = 1, compute the
approximate solution value y1 at time t1 = 1 for the ODE y′ = −y using each of the following two
numerical methods. (Your answers should be numbers, not formulas.)

(a) Euler’s method

(b) Backward Euler method

Solution:

(a) Euler’s method is defined as yn+1 = yn + ∆tf(yn).
Thus, y1 = y0 + h(−y) = 1 + 1(−0) = 1

(b) The Backward Euler method is defined as yn+1 = yn + ∆tf(yn+1).
Thus, y1 = y0 + h(−y1) ⇒ y1(1 + h) = y0 ⇒ y1 = 1

1+1 = 1
2

4. Purpose: Converting a second order ODE to a first order system, determining stability of solutions
and stability of Euler’s method and Backward Euler method on this system.

Note to Instructor: If you have chosen not to present the slides on stability of an ODE solution, you
may wish to skip part (c) of this exercise. From [Hea02, p.417,#9.7]. Exercise: Consider the IVP
y′′ = y for t ≥ 0 with initial values y(0) = 1 and y′(0) = 2.

(a) Express this second-order ODE as an equivalent system of two first-order ODEs.

(b) What are the corresponding intial conditions for the system of ODEs in part (a)?

(c) Are solutions of this system stable?

(d) Perform one step of Euler’s method for this ODE system using a step size of h = 0.5.

(e) Is Euler’s method stable for this problem using this step size?

(f) Is the backward Euler method stable for this problem using this step size?

Solution:

(a) Recall the given equation y′′ = y. Let u = y′. Differentiating the latter equation, we get u′ = y′′.
Substituting this into the given equation, gives u′ = y. So the system of two first order ODEs
is given by

y′ = u

u′ = y.

(b) The corresponding initial conditions for the system of ODEs in part (a) are: y(0) = 1 and
u(0) = 2.

(c) We find the solution of this system and consider the behaviour as t increases:
[

y′

u′

]

=

[

0 1
1 0

] [

y
u

]

= α

[

1
1

]

et + β

[

1
−1

]

e−t

So we find that
y = αet + βe−t

u = αet − βe−t

. Using the initial conditions, α = 3
2 and β = −1

2 , so the solution of the system is

y =
3

2
et − 1

2
e−t

. From this, it can be seen that the solutions of the system are unstable because as t → ∞,
y → ∞.
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(d) Euler’s method state that, given y(t0) = y0, t0 and h, then y(t1) = y(t0) + hf(t0, y0). In this

case, we have that f : Y =

[

y
u

]

, y(t0) : Y(0) =

[

2
1

]

= Y0, t0 : t0 = 0, h = 0.5. Now since

Y(0) =

[

2
1

]

, then

Y1 = Y0 + hY0

=

[

2
1

]

+ 0.5

[

2
1

]

=

[

3
2
3

]

, so y(0.5) = 3 and u(0.5) = 3
2 .

(e) With the step size h = 0.5, Euler’s method takes the form

Yk+1 = Yk + 0.5Yk

=
3

2
Yk.

In this case, the amplication factor is 3
2 , which is greater than one so Euler’s method will be

unstable with h = 0.5.

(f) For backward Euler,

Yk+1 = Yk + 0.5Yk+1

= −2Yk

= (−2)k+1Y0.

Since |(−2)| > 1, then backward Euler will be unstable for this problem with h = 0.5.

5. Purpose: Identifying properties of methods. From [Hea02, pp.417–418,#9.9]. Exercise: For each
property listed below, state which of the following two ODE methods has or have the given property:

yk+1 = yk +
h

2
(3f(tk, yk) − f(tk−1, yk−1)) (1)

yk+1 = yk +
h

2
(f(tk, yk) − f(tk+1, yk+1)) (2)

Properties:

(a) Second-order accurate

(b) Single-step method

(c) Implicit method

(d) Unconditionally stable

(e) Good for solving stiff ODEs

6. Purpose: Determining the accuracy of a method through Taylor expansions. Note to Instructor:
You may need to help the students by giving them a bit more background on how to Taylor expand
about points other than tn+1. For example,

y(tn−1) = y(tn) − hy′(tn) +
h2

2
y′′(tn) − h3

3!
h′′′(tn) + O(h4)

From [Hea02, pp.418,#9.12].
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Exercise: The centered difference approximation

y′ ≡ yk+1 − yk−1

2h

leads to the two-step leapfrog method

yk+1 = yk−1 + 2hf(tk, yk)

for solving the ODE y′ = f(t, y). Determine the order of accuracy for this method.

Solution:
Write expressions for yk+1 and yk−1 as follows,

yk−1 = yk − hy′

k +
h2

2
y′′

k − h3

3!
y′′′

k + O(h4)

yk+1 = yk + hy′

k +
h2

2
y′′

k +
h3

3!
y′′′

k + O(h4)

Thus we can compute y′ using the leapfrog method as shown,

y′ =
yk+1 − yk−1

2h
=

2hy′

k + h3

3! y
′′′

k + O(h4)

2h
= y′

k +
h2

3!
y′′′

k + O(h4) = y′

k + O(h2)

Thus, the accuracy for this method is O(h2).

7. Purpose: Computing project. Using packaged software to compute the solution to a system of ODEs
representing an SIR epidemic model. Understanding the meaning of the model and experimenting
with parameter values to determine different outcomes.

From [Hea02, pp.418–419,#9.2]. Exercise: The Kermack-McKendrick model for the course of an
epidemic in a population is given by the system of ODEs

y′

1 = −cy1y2

y′

2 = cy1y2 − dy2

y′

3 = dy2

where y1 represents susceptibles, y2 represents infectives in circulation, and y3 respresents infectives
removed by isolation, death, or recovery and immunity. The parameters c and d represent the
infection rate and removal rate, respectively. Use a library routine to solve this system numerically,
with the parameter values c = 1 and d = 5, and initial values y1(0) = 95, y2(0) = 5, and y3(0) = 0.
Integrate from t = 0 to t = 1. Plot each solution component on the same graph as a function of t.
As expected with an epidemic, you should see the number of infectives grow at first, then diminish
to zero. Experiment with other values for the parameters and initial conditions. Can you find values
for which the epidemic does not grow, or for which the entire population is wiped out?

Solution:
A plot of each component on the same graph, as a function of t can be seen in Figure 21. In the plot,
y1, the susceptibles is represented by the thin solid line, y2, the infectives in circulation represented
by thin dashed line, and y3, the infectives removed is represented by the thick solid line.

Examples of values for which the epidemic does not grow include c = 0.5, d = 5 and c = 1, d = 100.
An example value for which the entire population is wiped out is c = 10, d = 10.

8. Purpose: Computing project. Using packaged software to compare efficiency of various library
routines. Note to Instructor: You may ask the students first to catalog the ODE solving routines
available in whichever numerical package you choose to have them use. Or you may wish to specify
a particular set of ODE solvers the students should implement. From [Hea02, p.419,#9.3].
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Figure 21: Phase portrait of the system in Exercise 4.

Exercise: Experiment with several different library routines having automatic step-size selection to
solve the ODE

y′ = −200ty2

numerically. Consider two different initial conditions, y(0) = 1 and y(−3) = 1/901, and in each case
compute the solution until t = 1. Monitor the step size used by the routines and discuss how and why
it changes as the solution progresses. Explain the difference in behavior for the two intial conditions.
Compare the different routines with respect to efficiency for a given accuracy requirement.

9. Purpose: Computing project. Using packaged or self-written software to compare stiff and non-stiff
numerical solution methods. Note to Instructor: You may choose to ask the students to compare
forward Euler with backward Euler, in addition to comparing the packaged routines. From [Hea02,
p.419,#9.5]. Exercise: The following system of ODEs models nonlinear chemical reactions

y′

1 = −αy1 + βy2y3

y′

2 = αy1 − βy2y3 − γy2
2

y′

3 = γy2
2

where α = 4 × 10−2, β = 104, and γ = 3 × 107. Starting with initial conditions y1(0) = 1 and
y2(0) = y3(0) = 0, integrate this ODE from t = 0 to t = 3. You may use either a library routine
or an ODE solver of your own design. Try both stiff and non-stiff methods, and experiment with
various error tolerances. Compare the efficiencies of the stiff and non-stiff methods as a function of
error tolerance.

Solution:
The following results were found using MATLAB ODE23 (nonstiff method)

The following results were found using MATLAB ODE23s (stiff method)

From these results, it can be seen that the stiff method seems to be more efficient than the non-stiff
method, requiring less time steps and generally less CPU time.
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Error tolerance t steps Failures CPU time (secs)

1e-12 2921 10 2.703
1e-10 2683 11 2.624
1e-8 2633 11 2.644
1e-6 2623 9 2.994
1e-4 2623 32 0.47

Error tolerance t steps Failures CPU time (secs)

1e-12 1690 4 5.387
1e-10 266 3 0.941
1e-8 50 3 0.43
1e-6 19 3 0.141
1e-4 15 3 0.741
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Exercises for Bifurcation Module

1. Purpose: To study saddle node bifurcations in a model. From [Str94], Example 8.1.1.

Exercise: The following system has been discussed by [Gri71] as a model for a genetic control system.
The activity of a certain gene is assumed to be directly induced by two copies of the protein for
which it codes. In other words, the gene is stimulated by its own product, potentially leading to an
autocatalytic feedback process. In dimensionless form, the equations are

ẋ = −ax + y

ẏ =
x2

1 + x2
− by

where x and y are proportional tothe concentrations of the protein and the messenger RNA from
which it is translated, respectively, and a, b > 0 are parameters that govern the rate of degradation
of x and y. Show that the system has three fixed points when a < ac, where ac is to be determined.
Show that two of these fixed points coalesce in a saddle-node bifurcation when a = ac. Then sketch
the phase portrait for a < ac, and give a biological interpretation.

Solution: The fixed points of a system are found by solving ẋ = 0 and ẏ = 0. For this particular
system, solve:

y = ax and y =
1

b

x2

1 + x2
, ⇒ ax =

x2

b(1 + x2)

for x∗ = 0,
1 ±

√
1 − 4a2b2

2ab

which illustrates the required three fixed points. Notice that if 1 − 4a2b2 = 0, or rather 2ab = 1, the
two latter fixed points coalesce into one. Thus we can determine ac = 1/2b, below which value three
fixed points exist.

At a = ac, the non-zero fixed point is x∗ = 1/2ab. The presence of the saddle-node bifurcation can
be confirmed by evaluating the Jacobian matrix,

A =

( −a 1
2x

(1+x2)2 −b

)∣

∣

∣

∣

x=x∗

= ab − 2x∗

(1 + (x∗)2)2

at the fixed point. Since two fixed points coalesce at a = ac, and the eigenvalues of A are both real
positive and negative, there exists a saddle-node bifurcation. The phase portrait for a < ac is shown
in Figure 22.

The biological interpretation is that the system can act like a biochemical switch, but only if the
MRNA and protein degrade slowly enough - specifically, their decay rates must satisfy ab < 1/2. In
this case, there are two stable steady states: one at the origin, meaning the gene is silent and there
is no protein around to turn it on; and one where x and y are large, meaning that the gene is active
and sustained by the high level of protein. The stable manifold of the saddle acts as a threshold; it
determines whether the gene turns on or off, depending on the intial values of x and y.

2. Purpose: To study homoclinic bifurcations. From [Str94], pp 262-263
Notes: This is similar to a heteroclinic bifurcation, in that it involves the unstable manifold of a
saddle point.

Exercise: Consider the system

ẋ = y

ẏ = µy + x − x2 + xy

(a) Show that the origin is a saddle point for all values of µ.

(b) Find any other equilibria and determine their stability.
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Figure 22: Phase portrait for the a < ac case

(c) Numerically plot phase portraits for values of µ between −1 and −0.5. What happens to the
unstable manifold through the origin as µ is varied?

(d) Numerically find the critical µ-value at which the stable and unstable manifolds through the
origin intersect. (This is called a homoclinic connection or homoclinic orbit.)

(e) Plot a few phase portraits for µ-values above and below this critical value and describe what
happens to the unstable manifold through the origin.

This type of bifurcation is called a homoclinic bifurcation.

Solution:

(a) The Jacobian of the system at the origin is J =

[

0 1
1 − 2x + y µ + x

]
∣

∣

∣

∣

0,0

=

[

0 1
1 µ

]

. The

eigenvalues are given by λ1,2 = µ
2 ±

√
µ2+4

2 . Now since µ2 + 4 > µ2 ∀µ, then it must hold that
√

µ2 + 4 > µ ∀µ. Therefore λ1 = µ
2 +

√
µ2+4

2 > 0 ∀µ and λ2 = µ
2 −

√
µ2+4

2 > 0 ∀µ. Since both
eigenvalues are real and are of opposite signs, then the origin is a saddle for all values of µ.

(b) The other fixed point, (1, 0) can be found by solving ẋ = 0 and ẏ = 0. The Jacobian evaluated

at this point is J =

[

0 1
−1 µ + 1

]

, and it has eigenvalues λ1,2 =
(µ+1)±

√
(µ+1)2−4

2 .

If (µ + 1)2 > 4, λ1,2 ∈ R and λ1,2 > 0 if µ > −1. Therefore, need µ > 1, which then makes this
fixed point an unstable node.
If (µ + 1)2 < 4, λ1,2 ∈ R and λ1,2 are complex conjugates. For µ < −1, the real parts of λ are
negative, therefore the fixed point is a stable spiral. For −1 < µ < 1, the real parts of λ are
positive, therefore the fixed point is an unstable spiral.

(c) Figure 23 shows different phase portraits for the system for µ = −0.55,−0.75,−0.8 and µ =
−0.95.

(d) Using Maple, it is possible to numerically determine the critical µ-value, µc. This critical value,
where the stable and unstable manifolds through the origin intersect occurs at µc = −0.8645.

(e) Figure 24 shows different phase portraits for the system for various values of µ above and below
the critical value µ = −0.8645.
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Figure 23: Phase portraits for Exercise 2c for various values of µ between −1 and −0.5.
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Figure 24: Phase portraits for Exercise 2e for various values of µ above and below the critical value of
µc = −0.8645.
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3. Purpose: To determine the type of bifurcation. From [Str94], Problem 8.1.6.

Exercise: Consider the system ẋ = y − 2x, ẏ = µ + x2 − y.

(a) Sketch the nullclines.

(b) Find and classify the bifurcations that occur as µ varies.

(c) Sketch the phase portrait as a function of µ.

Solution:

(a) The nullclines for this system are given by y = 2x and y = µ + x2, however the number of fixed
points varies depending on the value of µ. If µ > 1, the there are no fixed points for the system
(see Figure 25). For µ = 1, one fixed point occurs (see Figure 26), and for µ < 1, there are 2
fixed points for the system (see Figure 27).
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Figure 25: The nullclines for the µ > 1 case
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Figure 26: The nullclines for the µ = 1 case

(b) The bifurcations of the system occur at the critical value of µc = 1, and is a saddle-node
bifurcation. This can be found by evaluating the Jacobian, finding the eigenvalues and classifying
the fixed points for µ ≤ 1.
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Figure 27: The nullclines for the µ < 1 case
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