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Numerical Solution of ODE IVPs

Direction Field Review

General First Order Ordinary Differential Equation:

��
� � � ��� � � 	


 ��� is shorthand for �� � .


 � � � � � 	 is a function of the ��� � variable� and the

��� � variable � .

Assumptions:


 � � � � � 	 is defined and single valued in some rectangular region � in the

� � � plane.


 If � � � ��� 	 is a solution, then it is differentiable at all points in � . This allows

us to plot a smooth curve.
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Numerical Solution of ODE IVPs

Direction Field Review – Demo

A direction field should be plotted � � .
Step 1: Draw a region in the� � � plane.

Step 2: Choose a point ��� ��� 	 in the region.

Step 3: Plot a short line starting at ��� ��� 	 with slope � � � ��� 	 .
Step 4: Repeat steps (2) and (3) for many different points ��� � � 	 .
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Numerical Solution of ODE IVPs

Direction Field Review – Notes


 A direction field gives a sense of the �� � of the solutions.


 Warning: be careful plotting a line that has a ��� � (dividing

by zero).

Example:

�
� � � �
� � � � 	 � ��� � � 	
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Numerical Solution of ODE IVPs

Existence and Uniqueness: A Reminder

Questions we must ask:


 Is there a solution?


 Is there only one solution?

Why are these questions important?

1. If there is �� � , your computer program may

�� � .

2. If there is �� � , the program will
��� � . It may not be the one you want.

From your ODEs course, you learned theorems that gave checklists ensuring the

existence and uniqueness of ODE IVP solutions.

A TIP: Use these theorems.
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Numerical Solution of ODE IVPs

Well-Posed Problems: A Must for Computation

Before you begin computing a solution to an IVP, you must ensure that


 the problem is �� �

This automatically ensures that the solution to the problem


 exists


 is unique

Basic meaning: The solution of a well-posed problem is not only unique, but also

is

��� � to

��� �

in the data (which almost always will occur on a computer).
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Numerical Solution of ODE IVPs

Well-Posed Problems: Formal Definition

Definition: The IVP

�
� � � ��� � � 	 � � � � � � � � � � 	 � ��

is a well-posed problem if

(1) A �� � solution � ��� 	 to the problem ��� � .

(2) A number � � � exists such that a ��� � solution � ��� 	 to the

� � �

�� � � ��� � � 	�� � � � 	 � � � � � � � � � � 	 � �� � ��

exists whenever �
	 � and �
� �

(3) A constant � � � exists with the property that

 � � � 	 � � ��� 	 �� � � for all � � �� ��� �
7



Numerical Solution of ODE IVPs

Well-Posed Problems: An Easy Test?

Question: How can we tell whether criteria � � �
�

��� � for

well-posedness are satisfied for a particular problem?

Answer: Good news! There is an easy test (i.e., a

theorem) that tells us immediately whether an IVP is

well-posed.
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Numerical Solution of ODE IVPs

Well-Posed Problems: An Easy Test!

Theorem: Suppose � � � ��� � � 	 � � �� ��� � and � � ��� ��� �� . The IVP
� �

� �
� � � � � � 	 � � � �� � � � � � ��� 	 � ��

is well-posed provided

1. � is �� � on �

2. � satisfies a ��� � in the variable

��� � on the set � � �
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Numerical Solution of ODE IVPs

Lipschitz Continuity: Definition

Definition: A function � ��� � � 	 is said to be Lipschitz continuous or to satisfy a

Lipschitz condition in the variable � on a set � � �
� provided a constant � � �

exists with the property that
 � ��� � �  	 � � ��� � � � 	  � �  �  � � � 

whenever � � � �  	 � ��� � � � 	 � � . The constant � is called the Lipschitz constant.

Note: If � � � � � 	 is differentiable, then the Lipschitz condition guarantees that

�� � . Conversely, if � is differentiable with respect to � and

��� � , then � satisfies the Lipschitz condition. This property can

be used as a ��� � of whether the � � � is

satisfied.
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Numerical Solution of ODE IVPs

Lipschitz Condition Test: Example

Example: Determine whether the IVP � � � � � � � � 	 � � ��� � 	 � �� on � is well

posed, given

� ��� � � 	 � � �

and

� � � � � � � 	 � � ��� � � � � � � � � � ��� ��

If so, find the Lipschitz constant.

Answer: For each ��� � �  	 � ��� � � � 	 in � , we have

 � � � � �  	 � � ��� � � � 	  � � �  � � � �  � �  �  � � �  � �  �  � � � 

So, � ��� � � 	 is �� � in ��� � on

��� � , with Lipschitz constant � � ��� � .
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Numerical Solution of ODE IVPs

Well-Posed versus Stable Solutions (1)

Question: How much can a perturbed solution

��� � � 	 with perturbed

�� � � � �
��� 	 and

perturbed initial conditions

��� � � � 	 �
��� � � � from the original

solution

�� ��� 	 with original
�� ��� �
�� 	 and original initial conditions

�� ��� � 	 � �� �

when ��� � continuity with constant � on a bounded domain �

is assumed?

Answer:

 
��� ��� 	 � �� ��� 	   � ��� ����	 � 
 �  
��� � � �� �  �

��� ����	 � 
 � � �

�

 
�� � � ��  

where  
�� � � ��   � � � ��� �� � ����  
�� � ��� �

�� 	 � �� ��� �
�� 	  ��
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Numerical Solution of ODE IVPs

Well-Posed versus Stable Solutions (2)

Definition: A solution of the ODE

�� � �
�� ��� �
�� 	 is stable if for every � � � there is

a � � � such that if

��� ��� 	 satisfies the ODE and  
��� ��� � 	 � �� ��� � 	   � � then

 
��� ��� 	 � �� � � 	   � � for all� � � � �

Example: The solution of the IVP � � � � � with � ��� � 	 � �� and � a constant, is

given by � ��� 	 � � � ��� � � So,


 If � � � , every solution is �� � .


 If � � � , every solution is ��� � .
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Numerical Solution of ODE IVPs

Fundamental Concepts: Euler’s Method (1)

Disclaimer: Never use �� � actually to ��� �

an IVP. It is introduced here only to ��� � basic concepts and

definitions.

Our canonical IVP:

� �
� �

� � ��� � � 	 � � ��� � 	 � ��

on some region � in the plane.

Assumption: All problems we will see are well-posed.
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Numerical Solution of ODE IVPs

Fundamental Concepts: Euler’s Method (2)

(t1,y1)

Direction Field Arrow:
Take one step in this direction

Start Point
(t0,y0) }

Step size h

}
t1 = t0 + h
y1 = y0 + dy = y0 + h*f(t0,y0)

Slope = f(t0,y0)
Height =  f(t0,y0)*h

In general: Starting at � � � � �� 	 , we get to � � � �  � � � �  	 by using

� � �  � � � � �

� � �  � � � � � � ��� � � � � 	
Note: � � �  represents the numerical approximation to � ��� � �  	 .

Euler’s method is: � � and ��� � .
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Numerical Solution of ODE IVPs

Truncation Error

Truncation Error (TE) arises from the �� �

of the true solution.

Usually, a ��� � or �� � summation

approximates an ��� � .

Example: Taylor expand � ��� � �  	 to get Euler’s Method (a type of “Taylor

Method”):

� ��� � �  	 � � ��� � 	 � � �
�

� � � 	� �� �

Euler’s Method: Truncated Series

�

�
�

�

�
� �

��� � 	 � � � �
�

	

� �� �

Local Truncation Error (LTE)
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Numerical Solution of ODE IVPs

Order of a Method

Generally, Local Truncation Error (LTE) can be approximated by � ��� in the sense

that

�� �
� � �

LTE � � 	
�
� � �

In general: The number � � � is the order of the numerical method.

Example: Let �  be the numerical approximation to � � �  	 . Then LTE in Euler’s

method is:

� ���  	 � �  � �	�
�

�
� �

��� � 	 � 
 
 
 � � ���

Here, � � �� � , so Euler’s method is order ��� � .

Terminology:

An order �� � method implies:

The � � � error behaves like � 	 � .
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Numerical Solution of ODE IVPs

Summary: Types of Numerical Error


 Rounding error: From finite precision floating point arithmetic.

(Example: � � � � � � � � )


 Truncation error: From the method used. Two classes:

� Local (LTE): Error made in �� � of the numerical

method.

� Global (GTE): Accumulated error. Error made after

��� � of the numerical method.


 A numerical method is “order � ” if LTE = � � �
� �  	 .
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Numerical Solution of ODE IVPs

Stability of a Numerical Method: Introductory Example

Idea: If �� � do not cause the

��� � solution to diverge from the ��� �

solution, the numerical method is stable.

Example: Given the test IVP

��
� � � � � � � � 	 � ��

apply Euler’s method with step size � � � :

� � �  � � � � � � � �

� � � � � � 	 � �

which implies that

� � �  � � � � � � 	� �� �

Amplification Factor

� �  ��
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Numerical Solution of ODE IVPs

Stability of a Numerical Method: Introductory Example (2)

Example (continued): The “Growth” or “Amplification Factor” = � � � � � 	 .
Therefore,


 If � � � �  � � , Euler’s method is �� � .


 If � � � �  � � , Euler’s method is ��� � .

Requirements for Euler to be stable for this example:


 If � complex: � � must be inside a ��� � disk in the

complex plane centered at � � � .


 If � real: � � must be in the interval � 	 � .

Note: Choice of step-size � is crucial for stability.
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Numerical Solution of ODE IVPs

Stability of a Numerical Method: General System

General System: �� �

Taylor Expand:

�� ��� � � 	 � ��� �

Let� � � � in Taylor expansion:

�� � � � �  	 � �� ��� � 	 � �
�� ��� �
�� 	 � � � �
�

	 (1)

Euler’s method:

�� � �  � �� � � �
�� ��� �
�� 	 (2)

Subtract equation (1) from equation (2):

�� � �  � �� ��� � �  	� �� �

Global error � � � 
� �
�� �

� �� � � � 	 	� �

�

�� ��� � �
�� � 	 � �� � � � �
�� ��� � 	 	

�� �� �

Apply Mean Value Theorem

� � � �
� 	
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Numerical Solution of ODE IVPs

Stability of a Numerical Method: General System (2)

Applying the Mean Value Theorem:

�� ��� � �
�� � 	 � �� ��� � �
�� � � � 	 	 � � � ��� � � �
�� � � � � � � 	
�� � � � 	 	 �
�� �

� �� � � � 	 	

where


 � � � �� � matrix of

�� w.r.t.

�� and � � � � � � � �

��� � is expressed in general as:

�
� � �  � �� � � � � 	� �� �

Amplification Factor

�
� � � LTE � � 

Requirement for ��� � :

� �� � � � 	 � �

where � represents the ��� � of a matrix.
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Numerical Solution of ODE IVPs

Stability of a Numerical Method: General System (3)


 Observation: Stability requires that � �� � � � 	 � � .


 Question: What does this stability restriction imply?


 Answer: All eigenvalues of � � � must lie inside a �� � disk

in the �� � centered at ��� � .


 Note: If eigenvalues lie � � � the disk, the method will be

� 	 � .


 Implication: We must choose �
� � so

that all stability constraints are satisfied.
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Numerical Solution of ODE IVPs

Stability of a Numerical Method:

Euler Method Region of Stability

All eigenvalues of � � � must lie inside the disk.

−1

Re

Im

Region of Stability
for Forward Euler
Method

24



Numerical Solution of ODE IVPs

Stability of a Numerical Method: Euler Example

Example: Consider
��
� � � � � ��� � � 	 � � � � � 	 � �	 	 � � � � � � � �

Question: When will Euler’s Method be stable?

Answer: Notice that EM implies

� � �  � � � � � � � � � � � � � 	 � � 	 � � � � � � � ��� � � 	 	� �� �

Amplification Factor

� �

Therefore,


 For � � , the method is unstable for any ��� � .


 For �� � , the method will be stable if � � � .
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Numerical Solution of ODE IVPs

Stability of a Numerical Method: Euler Example Illustration

0 1 2 3 4 5 6
−0.5

0

0.5

1

Time t

So
lut

ion
 y(

t)

EM h = 0.10001, ODE dy/dt = −10(t−1)y, y0 = 0.00673795

Euler solver
True Solution
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Numerical Solution of ODE IVPs

Implicit Methods


 Recall: Euler’s method (EM) is �� � and
��� � . The limited region of stability for EM requires we

choose �� � carefully.


 Improvement: Make the � � �

� 	 � .


 How? Use information at �� � as wells as at ��� � .


 This makes the method ��� � .
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Numerical Solution of ODE IVPs

Implicit Methods: Backward Euler


 Example of an Implicit Method: Backward Euler Method (BE)

�� � �  � �� � � �
�� � � � �  �
�� � � � �� �

Implicit

	


 Question: How can we solve for

�� � �  ?


 Answer:

� Use �� � . This often requires calculating the

��� � of the function

�� ��� �
�� 	 .

� Use ��� � methods.


 Note: Both approaches require an initial guess, usually derived by taking one

step of an explicit method.
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Numerical Solution of ODE IVPs

Implicit Methods: Stability


 Trade-off: Implicit methods take � � but are more

��� � .


 Apply BE to the test ODE � � � � � :

� � �  � � � � � � � � � 

Therefore � � �

� �
�

� � � � 	
�

� �� �

Amplification Factor

��


 For BE to be stable we require

�
�

�
�

�

� � � �
�

�
�

�
� �


 Good news! As long as � � � 	 � � , BE is stable for any step size � .
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Numerical Solution of ODE IVPs

Stability of a Numerical Method: BE Stability Region Illustration

All eigenvalues of � � � must lie in the left half plane.

Region of Stability
for Backward Euler 
Method

Re

Im

Entire Left Half Plane
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Numerical Solution of ODE IVPs

Implicit Methods: Stability Notes

Notes:


 BE is �� � accurate (just like ��� � )


 For a �� � , the stability requirement becomes

� � �� � � � � 	
	  	 � �


 The stability region for BE is the entire � � � of the complex

plane (as compared to the radius 1 disk of EM).


 Since � 	 � step size � keeps us within the stability region, the BE

method is called �
� � .


 There exist higher order implicit methods, like the Trapezoid Method (order =

��� � ).


 Not all implicit methods are ��� � .
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Numerical Solution of ODE IVPs

Stiffness in ODEs

Question: What is “stiffness”?

Answer:


 Physically: A process whose components have �� � time

scales. Also, a process whose time scale is ��� � compared

to the time interval over which it is being observed.


 Mathematically: A well-posed ODE
�� � �
�� ��� �
�� 	 is “stiff” if its Jacobian � �

has ��� � that differ greatly in magnitude.


 Practically: An ODE is stiff if an explicit method (like EM) is

� � � because stability requirements force the step size � to

be extremely small.
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Numerical Solution of ODE IVPs

Stiffness in ODEs: Example 1

Example 1: For test ODE � � � � � with� � �� ��� � , the problem is
�� � if �� � .

Recall: For stability in EM, we require � � � � �� � . If � is real and � � � � � ,

this forces ��� � .

For a system: A system of ODEs with� � �� ��� � is � � � when
� 	 � where �

�

are the

�
� � of Jacobian � ��� �
�� � � 	 	 .
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Numerical Solution of ODE IVPs

Stiffness in ODEs: Example 2

Example 2: Consider
�
� � � � � � � � � � � 	 � �� � � � � � � 	 � � � � � � � � � �

Let � � � � � � . Then the Jacobian is �� � . So eigenvalue � �

��� � . Therefore,

� � � � 	 � � � 	 � � � � 	 � � � � � � � � � �

This is ��� � on� � � � � � � .

Note: on another interval,� � � � � � � � � � � we have

� � � � � � � � 	 � � � 	 � � � � � � � 	 � � � � � � 	 � � �

so this ODE is ��� � on this interval.
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Numerical Solution of ODE IVPs

Stiffness: EM vs BE

Consider

�
� � � � � � � � � � � � � � � � � � � � 	 � �

Let � � � � � . Computed output with perturbed initial data:

Time� � � � � � � � � � � � � � � � � � � � �

Exact Soln � � � � � � � � � �� � � � � � � �� �

EM � � � � � � � � � � � � � � � � � � � � � �

EM � � � � � � � � � � � � � � � � � �	 � � �

BE � � � � � � � � � � � � � � � � � � � �

BE � � � � � � � � � � � � � � � � � � � �
35



Numerical Solution of ODE IVPs

Stiffness: Comments on EM vs BE

Note:


 EM �� � with only ��� � perturbations.


 BE is ��� � even with � � � perturbations.
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Numerical Solution of ODE IVPs

Stiffness: Summary


 A particular ODE may be �� � or ��� � .


 A numerical ODE solving method can be ��� � or
� � � for a particular problem.


 The stability of the numerical method often depends on

�
	 � .


 �
� � methods should (almost) always be used to solve stiff

ODEs.
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Numerical Solution of ODE IVPs

Other IVP Solvers

Other classes of numerical IVP solvers include (but are not limited to):


 Higher Order Taylor methods (seldom used)

� Can give �� � accuracy.

� They require the computation of the ��� � of � ��� � � 	 .


 Runge-Kutta methods (very popular)

� Can give ��� � accuracy.

� Do not need � � � of � ��� � � 	 .

� Can be � 	 � or �
� � .

� These are ��� � -step methods.

� Methods include: Midpoint, Modified Euler, Heun, 4th Order

Runge-Kutta (RK4)
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Numerical Solution of ODE IVPs

Other IVP Solvers (cont)


 Multi-step methods

� Can give �� � accuracy.

� Can be ��� � or ��� � .

� Starting values must be calculated with a � � �

method (e.g., RK4)

� Methods include: Adams-Bashforth, Adams-Moulton, Milne, Simpson


 Extrapolation methods

� These take solutions generated by lower order methods, and increase

� 	 � by �
� � .

� Variations of these methods presented in [SB93], [Ste73], and [Gra65].

Also see the discussion and reference list in [Asa95, p.642].
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Numerical Solution of ODE IVPs

Systems and Higher Order IVPs


 All methods and theories presented can be �� � to apply to

systems.


 Many higher order IVPs can be ��� � to 1st order systems

of IVPs. Then all methods and theories apply here, too.

Example: Suppose we have the second order equation describing a linear spring,

�
� � � � � � � � � � 	 � �� � �
�

� � 	 � ��

Convert this to a� � � first order system of equations:

��
� � �

�
� � �� �
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Numerical Solution of ODE IVPs

Solving IVPs with Packaged Software

To solve a system of ODE IVPs

�� � �
�� � � �
�� 	 with � ��� � 	 � �� with a packaged

routine typically requires �� � to supply the following:


 The name of the routine that computes

�� ��� �
�� 	 .


 ��� � and ��� � values for times� .


 Initial value � � .


 
 
 and for some solvers, sometimes 
 
 



 The number of equations in the system.


 � � � and/or � 	 � error tolerances.


 
 
 and sometimes for a stiff ODE 
 
 



 The routine that computes the Jacobian � � of function
�� .
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