NUMERICAL SOLUTION OF ODE IVPs

Overview

1.	Quick review of direction fields.
2.	A reminder about(1) and(2).
3.	Important test: Is the ODE initial value problem(3)?
4.	Fundamental concepts: Euler's Method.
5.	Fundamental concepts: Truncation error.
6.	Fundamental concepts:(4) of a method.
7.	Fundamental concepts:(5) of a method.
8.	Stiff ODEs.
9.	Other methods overview.
10.	Systems and higher order IVPs.
11.	Solving IVPs with packaged software.

Direction Field Review

General First Order Ordinary Differential Equation:

y' = f(t, y)

- y' is shorthand for _____(1).
- f(t, y) is a function of the _____(2) variable t and the _____(3) variable y.

Assumptions:

- f(t, y) is defined and single valued in some rectangular region R in the t y plane.
- If y = y(t) is a solution, then it is differentiable at all points in R. This allows us to plot a smooth curve.

Direction Field Review – Demo

(1)

A direction field should be plotted _____

- Step 1: Draw a region in the t y plane.
- Step 2: Choose a point (a, b) in the region.
- **Step 3:** Plot a short line starting at (a, b) with slope f(a, b).
- Step 4: Repeat steps (2) and (3) for many different points (a, b).

Direction Field Review – Notes

- A direction field gives a sense of the _____(1) of the solutions.
- Warning: be careful plotting a line that has a _____(2) (dividing by zero).

Example:

$$y' = (y^2 - t^2)/(2ty)$$

Existence and Uniqueness: A Reminder

Questions we must ask:

- Is there a solution?
- Is there only one solution?

Why are these questions important?

1. If there is ______(1), your computer program may

_____(2) •

2. If there is _____(3), the program will

(4). It may not be the one you want.

From your ODEs course, you learned theorems that gave checklists ensuring the existence and uniqueness of ODE IVP solutions.

A TIP: Use these theorems.

Well-Posed Problems: A Must for Computation

Before you begin computing a solution to an IVP, you must ensure that

• the problem is _____(1)

This automatically ensures that the solution to the problem

- exists
- is unique

Basic meaning: The solution of a *well-posed problem* is not only unique, but also is

(3)in the data (which almost always will occur on a computer).

_____(2) to

Well-Posed Problems: Formal Definition

Definition: The IVP

$$y' = f(t, y), \ a \le t \le b, \ y(a) = y_0$$

is a *well-posed* problem if

Well-Posed Problems: An Easy Test?

Question: How can we tell whether criteria (1) - (3) for well-posedness are satisfied for a particular problem? Answer: Good news! There is an *easy test* (*i.e.*, a theorem) that tells us immediately whether an IVP is well-posed.

Well-Posed Problems: An Easy Test!

Theorem: Suppose $D = \{(t,y) | t \in [a,b] \text{ and } y \in [c,d] \}$. The IVP

$$\frac{dy}{dt} = f(t, y), \ t \in [a, b], \ y(a) = y_0$$

is well-posed provided

Lipschitz Continuity: Definition

Definition: A function f(t, y) is said to be *Lipschitz continuous* or to satisfy a *Lipschitz condition* in the variable y on a set $D \subset \Re^2$ provided a constant L > 0 exists with the property that

$$|f(t, y_1) - f(t, y_2)| \le L|y_1 - y_2|$$

whenever $(t, y_1), (t, y_2) \in D$. The constant L is called the *Lipschitz constant*. Note: If f(t, y) is differentiable, then the Lipschitz condition guarantees that ______(1). Conversely, if f is differentiable with respect to y and ______(2), then f satisfies the Lipschitz condition. This property can be used as a ______(3) of whether the ______(4) is satisfied.

Lipschitz Condition Test: Example

Example: Determine whether the IVP $y' = f(t, y), \ y(t_0) = y_0$ on D is well posed, given

$$f(t,y) = ty$$

and

$$D = \{(t, y) | t \in [1, 2], y \in [-3, 4]\}$$

If so, find the Lipschitz constant.

Answer: For each $(t, y_1), (t, y_2)$ in D, we have

$$|f(t, y_1) - f(t, y_2)| = |ty_1 - ty_2| = t|y_1 - y_2| \le 2|y_1 - y_2|$$

So, f(t,y) is _____(1) in ____(2) on ____(3), with Lipschitz constant L =____(4).

Well-Posed versus Stable Solutions (1)

Question: How much can a perturbed solution $\hat{\vec{y}}(t)$ with perturbed $\hat{\vec{f}}(t, \hat{\vec{y}})$ and perturbed initial conditions $\hat{\vec{y}}(t_0) = \hat{\vec{y}}_0$ _____(1) from the original solution $\vec{y}(t)$ with original $\vec{f}(t, \vec{y})$ and original initial conditions $\vec{y}(t_0) = \vec{y}_0$ when _____(2) continuity with constant L on a bounded domain D is assumed?

Answer:

$$\begin{split} ||\hat{\vec{\mathbf{y}}}(t) - \vec{\mathbf{y}}(t)|| &\leq e^{L(t-t_0)} ||\hat{\vec{\mathbf{y}}}_0 - \vec{\mathbf{y}}_0|| + \frac{e^{L(t-t_0)} - 1}{L} ||\hat{\vec{\mathbf{f}}} - \vec{\mathbf{f}}|| \\ \text{where } ||\hat{\vec{\mathbf{f}}} - \vec{\mathbf{f}}|| &= \max_{(t,\vec{\mathbf{y}}) \in D} ||\hat{\vec{\mathbf{f}}}(t,\vec{\mathbf{y}}) - \vec{\mathbf{f}}(t,\vec{\mathbf{y}})||. \end{split}$$

Well-Posed versus Stable Solutions (2)

Definition: A solution of the ODE $\vec{\mathbf{y}}' = \vec{\mathbf{f}}(t, \vec{\mathbf{y}})$ is stable if for every $\epsilon > 0$ there is a $\delta > 0$ such that if $\hat{\vec{\mathbf{y}}}(t)$ satisfies the ODE and $||\hat{\vec{\mathbf{y}}}(t_0) - \vec{\mathbf{y}}(t_0)|| \le \delta$ then $||\hat{\vec{\mathbf{y}}}(t) - \vec{\mathbf{y}}(t)|| \le \epsilon$ for all $t \ge t_0$.

Example: The solution of the IVP $y' = \lambda y$ with $y(t_0) = y_0$ and λ a constant, is given by $y(t) = y_0 e^{\lambda t}$. So,

- If $\lambda > 0$, every solution is _____(1).
- If $\lambda < 0$, every solution is _____(2).

Fundamental Concepts: Euler's Method (1)

Disclaimer: Never use _____(1) actually to _____(2) an IVP. It is introduced here only to _____(3) basic concepts and definitions.

Our canonical IVP:

$$\frac{dy}{dt} = f(t, y), \ y(t_0) = y_0$$

on some region D in the plane.

Assumption: All problems we will see are well-posed.

Truncation Error

Order of a Method

Generally, Local Truncation Error (LTE) can be approximated by $\alpha h^{\mathbf{k}}$ in the sense that

$$\lim_{h \to 0} \left(\frac{\mathsf{LTE}(h)}{h^{\mathbf{k}}} \right) = \alpha$$

In general: The number k-1 is the order of the numerical method.

Example: Let y_1 be the numerical approximation to $y(t_1)$. Then LTE in Euler's method is:

$$y(t_1) - y_1 = \frac{h^2}{2}y''(t_0) + \dots = \alpha h^2$$

Here, k = (1), so Euler's method is *order* (2).

Terminology:

An *order* _____(3) method implies:

The ______(4) error behaves like _____(5).

Summary: Types of Numerical Error

- Rounding error: From finite precision floating point arithmetic. (Example: $\frac{1}{3} \approx 0.3333$)
- Truncation error: From the method used. Two classes:

Local (LTE): Error made in _____(1) of the numerical method.

• Global (GTE): Accumulated error. Error made after

(2) of the numerical method.

• A numerical method is "order n" if LTE = $\mathcal{O}(h^{n+1})$.

Stability of a Numerical Method: Introductory Example

Idea: If _______ do not cause the _____(2) solution to diverge from the ______(3) solution, the numerical method is stable. Example: Given the test IVP $y' = \lambda y, \ y(0) = y_0$ apply Euler's method with step size _____(4): $y_{n+1} = y_n + h\lambda y_n = (1 + h\lambda)y_n$ which implies that $y_{n+1} = \underbrace{(1+h\lambda)}_{n+1} y_0$ **Amplification Factor**

Stability of a Numerical Method: Introductory Example (2)

Example (continued): The "Growth" or "Amplification Factor" = $(1 + h\lambda)$. Therefore,

• If $|1 + h\lambda| \le 1$, Euler's method is _____(1).

• If $|1 + h\lambda| > 1$, Euler's method is _____(2).

Requirements for Euler to be stable for this example:

• If λ complex: $h\lambda$ must be inside a _____(3) disk in the complex plane centered at _____(4).

• If λ real: $h\lambda$ must be in the interval _____(5).

Note: Choice of step-size h is crucial for stability.

Stability of a Numerical Method: General System (2)

Applying the Mean Value Theorem:

$$\vec{\mathbf{f}}(t_k, \vec{\mathbf{y}}_k) - \vec{\mathbf{f}}(t_k, \vec{\mathbf{y}}(t_k)) = \mathbf{J}_f(t_k, \alpha \vec{\mathbf{y}}_k + (1 - \alpha) \vec{\mathbf{y}}(t_k))(\vec{\mathbf{y}}_k - \vec{\mathbf{y}}(t_k))$$

where

Stability of a Numerical Method: General System (3)

- Observation: Stability requires that $\rho(\mathbf{I} + h\mathbf{J}) \leq 1$.
- Question: What does this stability restriction imply?
- Answer: All eigenvalues of hJ_f must lie inside a _____(1) disk in the _____(2) centered at _____(3).
 Note: If eigenvalues lie ______(4) the disk, the method will be ______(5).
 Implication: We must choose ______(6) so that all stability constraints are satisfied.

Stability of a Numerical Method: Euler Method Region of Stability

All eigenvalues of $h\mathbf{J}_f$ must lie inside the disk.

Stability of a Numerical Method: Euler Example

Example: Consider

$$y' = -10(t-1)y, \ y(0) = e^{-5}, \ t \in [0,2]$$

Question: When will Euler's Method be stable?

Answer: Notice that EM implies

$$y_{k+1} = y_k + h(-10(t-1)y_k) = \underbrace{(1 - 10h(t-1))}_{\text{Amplification Factor}} y_k$$

Therefore,

Stability of a Numerical Method: Euler Example Illustration

Implicit Methods: Backward Euler

• Example of an Implicit Method: Backward Euler Method (BE)

$$\vec{\mathbf{y}}_{k+1} = \vec{\mathbf{y}}_k + h\vec{\mathbf{f}}(\underbrace{t_{k+1}, \vec{\mathbf{y}}_{k+1}}_{\text{Implicit}})$$

- Question: How can we solve for $\vec{\mathbf{y}}_{k+1}$?
- Answer:

○ Use	(1). This often requires calculating the			
	(2) of the function $ec{\mathbf{f}}(t,ec{\mathbf{y}})$.			
○ Use	(3) methods.			
Note: Both approach	es require an initial guess, usually derived by taking one			
step of an explicit me	thod			

Implicit Methods: Stability

• Trade-off: Implicit methods take _____(1) but are more

• Apply BE to the test ODE $y' = \lambda y$:

____(2)*

$$y_{k+1} = y_k + h\lambda y_{k+1}$$

Therefore $\Rightarrow y_k = \underbrace{(rac{1}{1-h\lambda})^k}_{ ext{Amplification Factor}} y_0$

• For BE to be stable we require

$$\left|\frac{1}{1-h\lambda}\right| < 1$$

• Good news! As long as $\Re(\lambda) < 0$, BE is stable for any step size h.

Stability of a Numerical Method: BE Stability Region Illustration

All eigenvalues of $h\mathbf{J}_f$ must lie in the left half plane.

Implicit Methods: Stability Notes

Notes:

- BE is _____(1) accurate (just like _____(2))
- \bullet For a _____(3), the stability requirement becomes $\rho(({\bf I}-h{\bf J}_f)^{-1})<1$
- The stability region for BE is the entire _____(4) of the complex plane (as compared to the radius 1 disk of EM).
- Since _____(5) step size *h* keeps us within the stability region, the BE method is called _____(6).
- There exist higher order implicit methods, like the Trapezoid Method (order = ____(7)).
 Not all implicit methods are _____(8).

Stiffness in ODEs

Question: What is "stiffness"?

Answer:

- <u>Physically:</u> A process whose components have _____(1) time scales. Also, a process whose time scale is _____(2) compared to the time interval over which it is being observed.
- <u>Mathematically</u>: A well-posed ODE $\vec{\mathbf{y}}' = \vec{\mathbf{f}}(t, \vec{\mathbf{y}})$ is "stiff" if its Jacobian \mathbf{J}_f has _____(3) that differ greatly in magnitude.
- Practically: An ODE is stiff if an explicit method (like EM) is

______(4) because stability requirements force the step size h to be extremely small.

Stiffness in ODEs: Example 2

Example 2: Consider

$$y' = -\alpha(y - \sin t) + \cos t, \ y(0) = 1, \ t \in [0, 1]$$

Let $\alpha = 1000$. Then the Jacobian is _____(1). So eigenvalue $\lambda = __(2)$. Therefore,

$$(1-0)\Re(\lambda) = (-\alpha) = -1000 << -1$$

This is _____(3) on $t \in [0,1]$.

Note: on another interval, $t \in \left[0, 0.002\right]$ we have

 $(0.002 - 0)\Re(\lambda) = (0.002)(-1000) = -2$

so this ODE is _____(4) on this interval.

Stiffness: EM vs BE

Consider

$$y' = -100y + 100t + 101, \ y(0) = 1$$

Let h = 0.1. Computed output with perturbed initial data:

Time t	0.00	0.10	0.20	0.30	0.40
Exact Soln	1.00	1.10	1.20	1.30	1.40
EM	0.99	1.19	0.39	8.59	-64.21
EM	1.01	1.01	2.01	-5.99	67.01
BE	0.00	1.01	1.19	1.30	1.40
BE	2.00	1.19	1.21	1.30	1.40

Stiffness: Comments on EM vs BE

Note:

Other IVP Solvers

Other classes of numerical IVP solvers include (but are not limited to):

• Higher Order Taylor methods (seldom used)

• Can give _____(1) accuracy.

 \circ They require the computation of the _____(2) of f(t,y).

• Runge-Kutta methods (very popular)

• Can give _____(3) accuracy.

 \circ Do not need _____(4) of f(t,y).

• Can be _____(5) or _____(6).

Methods include: Midpoint, Modified Euler, Heun, 4th Order
 Runge-Kutta (RK4)

Other IVP Solvers (cont)

- Multi-step methods
 - Can give _____(1) accuracy.
 Can be _____(2) or _____(3).
 Starting values must be calculated with a _____(4) method (*e.g.*, RK4)

• Methods include: Adams-Bashforth, Adams-Moulton, Milne, Simpson

• Extrapolation methods

 \circ These take solutions generated by lower order methods, and increase

_____(5) by _____(6).

Variations of these methods presented in [SB93], [Ste73], and [Gra65].
 Also see the discussion and reference list in [Asa95, p.642].

Systems and Higher Order IVPs

- All methods and theories presented can be _____(1) to apply to systems.
- Many higher order IVPs can be _____(2) to 1st order systems of IVPs. Then all methods and theories apply here, too.

Example: Suppose we have the second order equation describing a linear spring,

$$y'' = -ky, \quad y(0) = y_0, \quad y'(0) = v_0$$

Convert this to a 2×2 first order system of equations:

$$\begin{array}{rcl} y' &=& v \\ v' &=& \underline{\qquad} (3) \end{array}$$

Solving IVPs with Packaged Software

To solve a system of ODE IVPs $\vec{\mathbf{y}}' = \vec{\mathbf{f}}(t, \vec{\mathbf{y}})$ with $y(t_0) = y_0$ with a packaged routine typically requires _____(1) to supply the following:

• The name of the routine that computes $\vec{\mathbf{f}}(t, \vec{\mathbf{y}})$.

- _____(2) and _____(3) values for times t.
- Initial value y_0 .
- \cdots and for some solvers, sometimes \cdots
 - The number of equations in the system.
 - _____(4) and/or _____(5) error tolerances.
- \cdots and sometimes for a stiff ODE \cdots
 - The routine that computes the Jacobian \mathbf{J}_f of function \mathbf{f} .