QUALITATIVE ANALYSIS

Overview

- 1. Simplified System of ODEs
- 2. Solution and Analysis Approaches
- 3. Graphical Analysis: Finding Nullclines and Equilibria
- 4. Determining Stability Analytically

Reduction to Two ODEs

Letting

$$p = fk$$
 $m = k(k_{-1} + k_2) - k_1$
 $n = k(k_{-1} + k_3) - k_1$

the new ODE system becomes

Solution and Analysis Approaches

Question: What is the next step?

Answer: We want to "solve" this system. There are three main approaches to understanding the solutions of a system of ODEs:

- 1. Find the ______(1)
- 2. Do a _____(2)
- 3. Find a _____(3)

Finding Nullclines

Step 1: Find nullclines algebraically.

1. Set

$$\frac{dE}{dt} = \underline{\qquad \qquad }$$

$$\frac{dT}{dt} = \underline{\qquad \qquad }$$

$$(2)$$

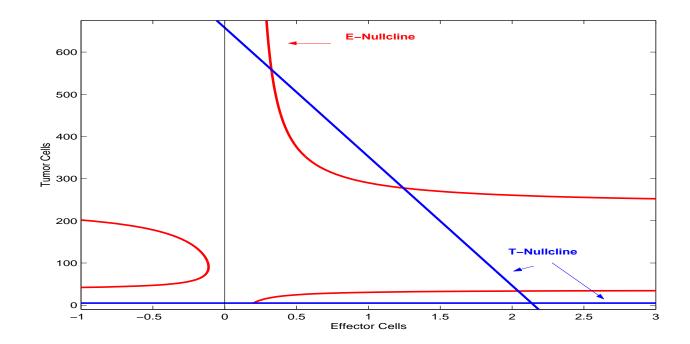
 $\mathsf{continue} \Rightarrow$

Finding Nullclines (continued)

2. Solve for E-nullcline:

3. Solve for T-nullcline:

Finding Equilibria



Summary of Graphical Analysis

From our *graphical* analysis of the equilibria we can conclude that **for the particular parameter set** used in the example:

•	Point A (tumor-free) is an(1).
•	Point B (low tumor burden) may be a(2) or a
	₍₃₎ , and may be ₍₄₎ or
	₍₅₎ , in which case nearby points might converge to a
	(6).
•	Point C (non-zero tumor burden) is(7) (and may be a
	(8)).
•	Point D (high tumor burden) is(9).

Analytic Determination of Stability

General Procedure				
Step 1: Specify an	₍₁₎ point to analyze. Call it (x_0,y_0) .			
Step 2:	_(2) the system about the equilibrium point by			
evaluating the Jacobian at that point.				
Step 3: Find the	(3) of the Jacobian to determine the stability			
properties of point (x_0,y_0)).			

The Stability of a Nearly Linear System

Theorem: from Borrelli and Coleman [BC98] Suppose that $\bf J$ is an $n\times n$ matrix of real constants. Furthermore, suppose $\vec{\bf P}(\vec{\bf x})$ is a vector-valued function that is continuously differentiable in an open ball $B_r(\vec{\bf p})$, that $\vec{\bf P}(\vec{\bf p})=0$, and that $\vec{\bf P}(\vec{\bf x})$ has order at least 2 at $\vec{\bf p}$. Then the *nearly linear* system:

$$\frac{d\vec{\mathbf{x}}}{dt} = \mathbf{J}(\vec{\mathbf{x}} - \vec{\mathbf{p}}) + \vec{\mathbf{P}}(\vec{\mathbf{x}})$$

has the following properties:

- 1. The system is asymptotically stable at \vec{p} if all eigenvalues of J have negative real parts.
- 2. The system is unstable at \vec{p} if there is at least one eigenvalue of J with positive real part.

The Stability of a Nearly Linear System (continued)

Note: The matrix, J , is the	$\phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$
evaluated at the $\underline{\hspace{1cm}}_{(2)}$ $\vec{\mathbf{p}}.$	
Unfortunately, this theorem doesn't tell us a	anything about the equilibrium if all of
the eigenvalues of ${f J}$ have real part	(3), but at least one of
them has real part	(4) ·

Analytic Determination of Stability: General Example

Example: Given the ODE system

$$\frac{dx}{dt} = F_1(x, y)$$

$$\frac{dy}{dt} = F_2(x, y)$$

the linearized system at a point (x_0, y_0) is

$$\begin{bmatrix} \frac{dx}{dt} \\ \frac{dy}{dt} \end{bmatrix} = \mathbf{J} \begin{bmatrix} x \\ y \end{bmatrix}, \quad \text{or with vector notation: } \dot{\mathbf{x}} = \mathbf{J}\dot{\mathbf{x}}$$

where **J** is the Jacobian of the system evaluated at (x_0, y_0) . continued \Rightarrow

Analytic Determination of Stability: General Example (continued)

The Jacobian matrix J is given by

Example: Jacobian for Point A

- ullet Plug T=0 into E-nullcline equation $\Rightarrow E=s/d$. Therefore, $(x_0,y_0)=(s/d,0)$.
- Determine the Jacobian.

Example: Eigenvalues of Jacobian for Point A

$$\lambda_1 = \underline{\hspace{1cm}}_{(3)}$$

$$\lambda_2 = \underline{\qquad \qquad (4)}$$

Note:

- λ_1 is always _____(5).