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Parameter Estimation

Gathering Data

� Parameters in the model: �����������
	�� � ������� and � .

� To find values for these eight parameters, compare the output from the model

equations with curves generated from experimental data.

Step One: Gather appropriate data.

On the next slide is a graph showing the growth of tumor cells in a control group of

mice with no bone marrow, and hence no immune response. We can use these

data to estimate tumor growth parameters
����� .
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Notes for Gathering Data slide:

Answers:

(1) � and � .

Notes: If time allows, a discussion on what parameters might be measured exper-

imentally should precede this slide. How might the different growth terms and compe-

tition terms be measured experimentally? Is it actually possible to isolate the effects of

the different cell types? What assumptions that were made in the construction of the

model should be questioned?
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Parameter Estimation

Mouse Data

0 10 20 30 40 50 60 70 80 90
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

8

Time in days

Tumor Population in Number of Cells

Figure 1: Tumor cell growth in mice with bone marrow destroyed
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Curve through Mouse Data
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Figure 2: What curve best fits the data?
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Parameter Estimation

Notes for Mouse Data slide:

Note: The previous slide shows the cubic polynomial which best fits the data. (This

curve was generated using MATLAB’s “Basic Fitting” tool in the pull-down menu of the

Figure window). The students should discuss what type of curve might fit the data,

with justification for their answers. Some students may recognize the data as having

the S-shaped form characteristic of logistic growth. (In this case, you may assure the

students that the logistic differential equation is solved explicity a later in this module.)
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Fitting the Curve

Step Two: Fitting the Curve to the Data

Main Idea: Minimize the total distance from the model curve to the

data points.

Collected Data: �������������	��
 at times ���������������

In our example these are the values of � ���
Model Solution: ���� ��� or ������ �������� "! #$�������&% .

Goal: Minimize '
! 
(

�*) � �+�"� � � ��,-� � �&.
(This is called a“least squares fit.”)
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Parameter Estimation

Notes for Fitting the Curve slide:

Answers:

(1) the number of tumor cells at the 7 different times.

Note: There are two points to be made here:

� What is an appropriate measure of “goodness of fit”? The students should come

up with a few different ideas here. For example, should we minimize the average

distance, should data points later in time be weighted more heavily, and so forth.

(The next slide shows graphically what is meant by the “distance” to the data).

� How can we find the solution to the model equations? What equation are we

trying to solve here? Since there are no immune cells, the model reduces to a

one-dimensional logistic equation, which can be solved explictly. ( This is worked

out in the following notes page). Numerical methods are discussed in the module

on Numerical Methods.
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Distance to Data
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Parameter Estimation

Finding the Curve

The � ������� ’s are determined:

� by solving the D.E. analytically (in which case we have � ����� for all values of
�
)

or

� numerically (which gives � ����� only for the
�
-values we specify.)

The minimization can also be done analytically (in very simple cases) by
�����

or numerically.
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Notes for Finding the Curve slide:

Answers:

(1) differentiating the function 	 . See the next slide.

Note:

1. The differential equation we are solving here is:��
 ������ ��� ����� ��� �
This equation may already be familiar to some students, and can be solved by

separating variables and using partial fractions:�� ����� ��� � � � �
� � ��� � �� ����� ��� � � � ��� � � �� � ���� ����

��� � � � ��� � ����
����! � �

� �#"
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Solving for � in terms of
�
, and writing the constant of integration in terms of the

initial value of � gives:�� �
��� � " ����� � � � " ����� � � " ����� �� � ��� � � " ����� �� " ������ � � " � ���� � � " � ���

� �
" �	� ��� � �

Letting � ��
 �� �� :

��� � �
" � �

� " � ���� � �

2. You can also use a weighted least squares fit, or any other norm, as your crite-

rion. See [MT73, Section 10.2] for more details.
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Parameter Estimation

Function Minimization

� Analytically we find a minimum by differentiating 	 with respect to the

parameters, finding the zeroes, and determining which zeroes correspond to

minima of 	 .

For example, suppose the model solution were: � ������ �
� � � and the data

points were: � � ��� � � � ��� ��� �
��� � ��� � ��� ����� � ������� �

.

The parameters which give the least squares distance are: ����� and
� �
� .

� There are many numerical methods for function minimization. Most

mathematical software packages have built-in routines to do this. The

numerical method is often specific to whether the function is linear or

non-linear, and whether there are additional constraints.

NB: A search for “minimize” usually produces available routines.
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Parameter Estimation

Notes for Function Mimimization slide:

Answers:

(1) � =1.45

(2) � =.6167

Note: In MATLAB, once data points are plotted, you can click on the Tools pull-down

menu button in the Figure window, then choose “Basic Fitting”, and then “quadratic” in

the pop-up menu. Here is the answer given by MATLAB’s Basic Fitting with a quadratic

fitting routine:
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y = 1.5*x + 0.62

data 1
   linear
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The formula used is:��� �� � ���
	��� ����������������� � �� � � �"!
�� � ���#�$ �� � �� � ���%	 �  �&�����  ���('

Setting this equal to zero and solving for � gives:

� �*) 	
���  �����+� )  �)  ��

Computing ,.-,0/ and setting the result equal to zero gives

� �� � ���1 � � �� � ���%	 �1�#���2�
Simultaneously requiring both partial derivatives to be zero by substitution gives, for

example (substituting the value for � from the second equation into the first):� �*)  � ) �1�  �#� ) ��� ) 	3 �� �	 )  ��� � ��4 ) 	3 �� �
8-2



This formula, with �
� � and �� � � � ����� � ����� ��� � �� � � �

��� ����� , gives the desired

values: �
� � ��� � , and �

� ��� � � � . In this example, we obtain only one possible value

for the minimizing parameters. We should check that we have indeed found a minimum

by, for example, checking the second-order condition, i.e. by computing the Hessian:	 � � �� � ��
 ����� �  ����� � ����  ������ � �  ����  � ��
 � ��� � �� � � � ���
� � ��� � �

�
The determinant of this matrix is � � � � � �� � � � ��� � � �

which is strictly positive (this can

be shown by induction, for example). Furthermore, both diagonal entries are positive.

So we see that we have indeed found a minimum.

It is rare that one can analytically find a minimum of the least squares problem. As

an illustrative, but perhaps painful, exercise, the students might try to write out the func-

tion 	 where �� ����� is the solution to the logistic differential equation, take its derivatives

with respect to the parameters � and � , and set them equal to zero. As in the simpler

linear case, they will get two equations which must be solved simultaneously, and which

will contain the data, � ����� and � � � � . Here is an outline of the procedure:

	 � �( ��� � � � ����� ��� � � � �
8-3

Taking the derivative of 	 with respect to � , for example, gives:� 	� � � � �( ��� � � ������ ��� � �
� � � ����� � �

� � � ! � � ����� �� �� � �( ��� � � ������ ��� � �
� � � ����� � �

� � � !�� ��� ����� ��� � �
� � � ������������ ��� � �

� � � ����� � � � �"!
The equation for ������ is obtained in a similar manner, and is equally complicated. By

this point, however, the students should be convinced that numerical methods are at

least preferable, and, in most cases, essential.
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Parameter Estimation

Root Finding

Usually parameter estimation requires � ��� a function, which in

turn requires finding the � �
� of its ���� .

This can be difficult to do by hand!

Fortunately, there are ��� � algorithms for finding the zeroes of

functions. For example:

NEWTON’S METHOD: To find a zero of the function
�

, iterate the equation

� ��� � � � � � � � � � �� 
 � � � �
starting at some initial guess for the zero, ��� .
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Notes for Root Finding slide:

Answers:

(1) minimizing

(2) zeroes

(3) derivative(s)

(4) numerical

9-1



Parameter Estimation

Root Finding Example

Applying this algorithm to the function
� � � �� � ��� �

� � � � � � � � � � with two

different starting values gives the following sequences:

�����	�
��������������������
�����������������������������
and

�	���	���������	����������	����	�������
�	�����
�
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Figure 3: Note the importance of the initial guess!
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Notes for Root Finding Example slide:

Notes: Newton’s method may be discussed at greater length here, or the previous

two slides may be omitted altogether. Alternatively, or in addition, an exercise which

uses Newton’s method or other minimizing routines could be assigned for in-class or

at-home work.

A root-finding demo using Newton’s method can be found in the MATLAB appendix.

MATLAB demo code: See ParDemo1 scripts.
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Parameter Estimation

MATLAB Curve Fitting: Solve ODE

As in Newton’s method, most numerical minimizing routines require an initial

“guess” - The value of this initial guess is usually very important.

In this example, we use MATLAB’s “fminsearch” routine to fit the tumor

growth data to the function.

Step A: Find an explicit formula for �
�����

by solving the appropriate differential

equation. Use the first point in the data set as your initial condition. The initial

value problem we are solving is (remember, we are assuming that there are no

immune cells): � ���
The solution is

�
� � �� �

" � ��� � � where " � �
� �
�
�

(You should have gotten this!).
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Notes for MATLAB Curve Fitting Solve ODE slide:

Answers:

(1) �
�

� � � ���
��� �

���
�
��� � � � � 
 �

Notes: This is the logistic equation which can be solved by partial fractions. See the

notes after slide 7.
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Parameter Estimation

MATLAB Curve Fitting: Choose a Metric

Step B: Write the function to be minimized as a MATLAB M-file. This function

should return the sum of the squares of the distances of the solution to the data:

	 � ���� � � �( ��� � � � � ��� � � ��������� � � � �
where the input to the function is ����� , and the function takes

as additional arguments: � �
� .
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Notes for MATLAB Curve Fitting Choose a Metric slide:

Answers:

(1) the parameters � and � . Note:In the demonstration code included in the appendix,

� and � are components of one input vector.

(2) the data points � ����� � � � ���
, and the solution to the DE � ����� .
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Parameter Estimation

MATLAB Curve Fitting: Example

To calculate the distance between our DE solution evaluated with given

parameters � and � and the data points, we call with MATLAB syntax:

distance function([parameters],@function name,data)

where

� distance function calculates ����� .
� [parameters] is the � �
� .
� function name is a routine that � �� .
� “data” is a ��� � array of data points

13
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Notes for MATLAB Curve Fitting Example slide:

Answers:

(1) 	 Note: See previous slide.

(2) vector
�
� �� � .

(3) calculates the solution to the DEs, � ����� .
(4) � � �
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Parameter Estimation

MATLAB Curve Fitting: Use FMINSEARCH

MATLAB’s “fminsearch” function will estimate the unknown parameters in the

differential equation by ����� between the

solution and the actual data points.

MATLAB syntax: [p,fval] = fminsearch(@distance function,[initial guess],[],data)

fminsearch takes as input

� distance function, the name of the function to be minimized
� [initial guess ], an initial guess for the � �
�
� data, the array of actual data or any argument needed by distance function.

Note: There is a placeholder, [], that can contain special options.

fminsearch returns
� p, a vector containing � ��
� fval, the ��� � evaluated at the minimizing values in p.

14
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Notes for MATLAB Curve Fitting Use FMINSEARCH slide:

Answers:

(1) minimizing the distance

(2) minimizing parameter values

(3) the minimizing parameter values

(4) distance function

Notes:

The MATLAB routine takes as arguments the name of the function to be minimized,

distance function, (the first argument of this function must be the unknown parameters),

an initial guess, in this case a vector [initial guess], and any additional values which are

required by the function to be minimized, data. The routine outputs the minimizing

values in the vector p, as well as the value of the function itself evaluated at those

minimizing values, fval. The empty vector [ ] is a place-marker, but can contain special

options to be sent to the routine. See fminsearch in the MATLAB Help menu for details.
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Parameter Estimation

MATLAB Curve Fitting: Program Flow

Program Flow: The syntax will be different in other languages but the procedure remains

roughly the same.

1. Store data in an array:

 � � � � � � � � � � �� � � � � � � � � � � �

2. Store the solution function as a separate routine (logisticsolution)

Arguments: � , � , ��� ,
�
; Output: �

� � �
. (Could require an ODE solver.)

3. Store the distance function as a separate routine (logisticdist)

Arguments: � , � , data array; Output: 	 � � �� � . Calls logisticsolution with

arguments � , � , the first data entry ( � � � � � ), and �� containing the first row

of the data.

Programming Note: It is more efficient to write the solution function in vector form: if it

can take a vector as its variable, then all of � -values can be computed at once.

Otherwise, a FOR-loop is necessary.

15

Parameter Estimation

MATLAB Curve Fitting: Program Flow (continued)

4. Call fminsearch

Arguments: the name of the distance function, a vector containing the initial

guesses for the minimizing values of � and � , and the data; Output: the

minimizing values of � and � in p, and the associated minimum distance.

5. Plot the data and the solution �
�����

evaluated using the computed “best”

parameter values for visual comparison.
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Parameter Estimation

Notes for MATLAB Curve Fitting: Program Flow slides:

Notes: A demo of the software used in the course might be appropriate here. If a

computer-classroom is available, one of the exercises for this section could be used as

an in-class project.

MATLAB demo code: see ParDemo2.
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MATLAB Curve Fitting: Graphical Output
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Figure 4: Comparison of estimated parameters with data
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Parameter Estimation

Notes for MATLAB Curve Fitting Graphical Output slide:

Note: The results are plotted on a logarithmic scale because the number of tumor

cells is so large, and also because the data are given this way in the paper.

Running the MATLAB routines will give the estimated values of � and � in the vector

p to be �
� � � � and �

� � � � � ��
 ��� � Ideally, the students will be able to see this

generated real-time in class.
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Estimating the Other Parameters

The output of our minimization routine gives:

�
� ����� and �

� � �
� .
How can we find the remaining parameters?

Measurements in mice without tumors show �

� The spleen contains �
��
��

immune cells.

� Reacting CTL’s ( � �� ) comprise � ��� � � of the

immune cells.

� � The number of CTL’s in the spleen � ��� �

18



Parameter Estimation

Notes for Estimating the Other Parameters slide:

Answers:

(1) .14 day
� �

(2) � � � � ��
 ���
cell

� �
Notes Make note of the units here, as a reminder of the role the parameters play in the

model. Also, we point out that the results here differ from the values given in [KMTP94].

This is due to the fact that the data we used were obtained by reading off values from

the rather small figures in the paper, while the authors of the paper presumably used

numerical data obtained from experiments. In the later sections, we will revert back

to the parameter values given in the article, since we feel that the data they used are

more accurate. However, the demonstration is useful in order to illustrate the process

of parameter estimation.

(3) Cytotoxic T-Lymphocytes Note: These are part of the ‘Effector’ or � -population in

our model.

(4) � � � �
��
 �

cells
� � 
 
 � � �

��
 �
cells
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Parameter Estimation

Estimating � and
�

From our earlier analysis of the model, we found that without any tumor, the

number of immune cells approaches the � ��� at

� ss
� � �
� .

Other experiments show that the average lifetime of a lymphocyte is 24.25 days,

giving a death rate of
� � � �� .

If we assume that the measured number of CTL’s is the steady state value, we

can estimate:

�
�

� ss
�
� ��� � .
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Parameter Estimation

Notes for Estimating � and
�

slide:

Answers:

(1) stable equilibrium (the tumor-free equilibrium)

(2) �
� �

, (we solved for this equilibrium by setting �
� 


, and
�

�
� � �� 


).

(3)

�
��� � � � � � 
 � � � day

� �
.

(4)
� ��� �

��
 �
cells
day

� � 
 � � � day
� � � � � � �

��
��
cells
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Incorporating the Immune Parameters

To find the remaining parameters: � ��� , � �
� , � �� ,
and � � � , we need to repeat the � � �
procedure, using the following data:

0 20 40 60 80 100 120
10

5

10
6

10
7

10
8

10
9

Time in Days

N
um

be
r o

f T
um

or
 C

el
ls

 −
 L

og
ar

ith
m

ic
 S

ca
le

Data From Mice With an Intact Immune System

Initial Tumor Value: 5*105

Initial Tumor Value: 5*106

Initial Tumor Value: 5*107

Figure 5: Tumor volumes over time with three initial conditions
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Parameter Estimation

Notes for Incorporating the Immune Parameters slide:

Answers:

(1) � , (2) � , (3) 	 , (4) � �
(5) data fitting

Note: It might be worth recalling the biological meaning of these parameters here, to tie

the equations back to the ‘real world’:

�
�

maximimum immune response rate �
�
�

steepness of immune response �
	

�
fraction of immune cells inactivated in interactions with tumor cells

�
�

fraction of tumor cells killed in interactions with immune cells

Note also that these data have a different shape from the data for the chimeric mice:

point out that the tumor grows and then shrinks, due to the response from the immune

system. Clinically, these tumors are called “immunogenic”.
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Parameter Estimation

Parameter Estimation Without an Explicit Solution

Again, we need to minimize the ����� function 	 � ����� �
	��
�
�

with respect to the unknown � �
� .
However, we no longer have a formula for �

�����
. We need to compute it by

� �� the system of differential equations.

The procedure is the same:

1. Gather the ��� � in an array.

2. Numerically evaluate �
�����

at the � � � given in the data.

3. Calculate the distance between the ���� and the
���
� .

4. Minimize this distance over all possible ���
� values.
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Parameter Estimation

Notes for Parameter Estimation Without an Explicit Solution slide:

Answers:

(1) distance Recall: The distance function measures the distance between the com-

puted solution and the data. We’ve used a sum of squares formula in our routines, but

other distances, or norms, may also be used.

(2) parameters

(3) numerically integrating

(4) data: � ��� � � � �����
(5) times,

���
(6) computed values �

����� �
(7) data,

� �
.

(8) parameter

MATLAB demo code: see ParDemo3. This demo estimates the parameters ����� �
	
and � using the data given in Figures 1 a), b) and c) of [KMTP94].

21-1

Parameter Estimation

Results: Estimates of Immune Response Parameters
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Figure 6: The parameters are estimated to be:
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� � ��� � � �
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Parameter Estimation

Notes for Results Estimates of Immune Response Parameters slide:

Notes: Point out that the tumor values are plotted on a logarithmic scale, to conform

with the figures in the article [KMTP94]. Thus, the discrepancies at lower tumor values

look larger than they are, relative to the higher values. On the other hand, we have

not made any attempts to refine the parameter estimation procedure for this demo,

preferring a straight-forward approach. The estimated parameters give graphs which

do not match the data as well for the later time values. This suggests the following:

Questions for discussion:

1. In what way could the parameter estimation procedure be modified in order to

better match the data points at the later time values? Suggestion: Give more

weight to distances between computed values and data values for the later time

points, by multiplying the squared differences by an increasing function of time. It

should be noted, also, that in our estimation we force the initial values to match,

perhaps thereby encouraging stronger agreement with the data for small time

values.

2. Is it likely that the differences between computed values and the data are due

to experimental error? How could we test this? Suggestion: The data are an

22-1

average of several experiments: the first and last sets are an average of two

individual experiments, while the second set is the result of a single experiment.

We are using all of the data together, and assuming that the parameters are the

same for all of the experimental subjects. What is known about the variation

in immune response between the different mice? Perhaps a large sample is

needed to get parameters which are optimal for all of the experiments.

3. How bad is this fit? Is it bad enough to require an adjustment in the model

equations? If so, what adjustments do the errors suggest? Suggestion: This is

a tough question. Kuznetsov et al. argue that the qualitative results, in particular

the regrowth of the tumor shown in the computed graphs, has been observed

clinically. We contend that the sample size is too small, and that parameter

values vary too widely over the different mice. A larger sample size would be

needed to reach a definitive answer as to whether this model adequately mirrors

reality. In general, we can only hope to get qualitative information from a model

which only uses two cell types from the entire organism.

Note: In the analysis of the module, we will use the parameter estimates from the

article [KMTP94] as the ‘normal’ values, rather than our own estimates. We do this for

two reasons: we assume that the authors of the article had access to more precise data,
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and we feel that using different parameter values might be confusing to the student who

is reading the orginal article as she works through the module.

We collect here for completeness the parameter estimates from [KMTP94]:
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