Assignment \#12

Due on Monday, October 29, 2007
Read Section 7.4 on The Derivative, pp. 187-197, in Bressoud.
Read Section 7.3 on Directional Derivatives, pp. 181-187, in Bressoud.

Background and Definitions

C^{2} Maps. Let U denote an open subset of \mathbb{R}^{n} and let $f: U \rightarrow \mathbb{R}$ be a scalar field. Suppose the partial derivatives

$$
\frac{\partial f}{\partial x_{j}}(x) \quad j=1,2, \ldots, n
$$

exist for all $x \in U$. If the partial derivatives of these functions exit in U, we call them the second partial derivatives of f in U and denote them by

$$
\frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}(x) \quad j=1,2, \ldots, n ; i=1,2, \ldots, n .
$$

If the second partial derivatives of f exist and are continuous in U, then we say that f is of class C^{2}, or a C^{2} map.
The Divergence. Let U denote an open region in \mathbb{R}^{3} and $F: U \rightarrow \mathbb{R}^{3}$ be a vector field given by

$$
F(x, y, z)=P(x, y, z) \widehat{i}+Q(x, y, z) \widehat{j}+R(x, y, z) \widehat{i}
$$

where P, Q and R are differentiable scalar fields in U. The divergence of F, denoted $\operatorname{div} F$, is defined to be the scalar field

$$
\operatorname{div} F=\frac{\partial P}{\partial x}+\frac{\partial Q}{\partial y}+\frac{\partial R}{\partial z}
$$

Do the following problems

1. Let $r=\sqrt{x^{2}+y^{2}+z^{2}}$ for $(x, y, z) \in \mathbb{R}^{3}$. Compute the second partial derivatives of r, and give their domains of definition.
2. Let U denote an open region in \mathbb{R}^{3} and $f: U \rightarrow \mathbb{R}$ be a C^{2} scalar field. Compute $\operatorname{div} \nabla f$ in terms of the second partial derivatives of f.
3. Let U denote an open region in \mathbb{R}^{3} which does not contain the origin $(0,0,0)$ and define $f: U \rightarrow \mathbb{R}$ by

$$
f(x, y, z)=\frac{1}{r} \quad \text { where } r=\sqrt{x^{2}+y^{2}+z^{2}} \text { and }(x, y, z) \in U
$$

Compute div ∇f.
4. Let D denote an open region in \mathbb{R}^{2} and $f: D \rightarrow \mathbb{R}$ denote a scalar field whose second partial derivatives exist in D. Fix $(x, y) \in D$, and define the scalar map

$$
S(h, k)=f(x+h, y+k)-f(x+h, y)-f(x, y+k)+f(x, y)
$$

where $|h|$ and $|k|$ are sufficiently small.
(a) Apply the Mean Value Theorem to obtain an \bar{x} in the interval $(x, x+h)$, or $(x+h, x)$ (depending on whether h is positive or negative, respectively) such that

$$
S(h, k)=\left(\frac{\partial f}{\partial x}(\bar{x}, y+k)-\frac{\partial f}{\partial x}(\bar{x}, y)\right) h .
$$

(b) Apply the Mean Value Theorem to obtain a \bar{y} in the interval $(y, y+k)$, or $(y+k, y)$ (depending on whether k is positive or negative, respectively) such that

$$
S(h, k)=\frac{\partial^{2} f}{\partial y \partial x}(\bar{x}, \bar{y}) h k
$$

5. (Continuation of Problem 4.)
(c) Show that if f is of class C^{2}, then

$$
\lim _{(h, k) \rightarrow(0,0)} \frac{S(h, k)}{h k}=\frac{\partial^{2} f}{\partial y \partial x}(x, y) .
$$

(d) Deduce that if f is of class C^{2}, then

$$
\frac{\partial^{2} f}{\partial y \partial x}(x, y)=\frac{\partial^{2} f}{\partial x \partial y}(x, y)
$$

that is, the mixed second partial derivatives are the same for C^{2} maps.

