Assignment #12

Due on Monday, October 29, 2007

Read Section 7.4 on The Derivative, pp. 187–197, in Bressoud.

Read Section 7.3 on Directional Derivatives, pp. 181–187, in Bressoud.

Background and Definitions

 C^2 Maps. Let U denote an open subset of \mathbb{R}^n and let $f: U \to \mathbb{R}$ be a scalar field. Suppose the partial derivatives

$$\frac{\partial f}{\partial x_j}(x) \quad j = 1, 2, \dots, n,$$

exist for all $x \in U$. If the partial derivatives of these functions exit in U, we call them the second partial derivatives of f in U and denote them by

$$\frac{\partial^2 f}{\partial x_i \partial x_j}(x) \quad j = 1, 2, \dots, n; i = 1, 2, \dots, n.$$

If the second partial derivatives of f exist and are continuous in U, then we say that f is of class C^2 , or a C^2 map.

The Divergence. Let U denote an open region in \mathbb{R}^3 and $F: U \to \mathbb{R}^3$ be a vector field given by

$$F(x, y, z) = P(x, y, z) \ \hat{i} + Q(x, y, z) \ \hat{j} + R(x, y, z) \ \hat{i},$$

where P, Q and R are differentiable scalar fields in U. The *divergence* of F, denoted div F, is defined to be the scalar field

div
$$F = \frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z}$$

Do the following problems

- 1. Let $r = \sqrt{x^2 + y^2 + z^2}$ for $(x, y, z) \in \mathbb{R}^3$. Compute the second partial derivatives of r, and give their domains of definition.
- 2. Let U denote an open region in \mathbb{R}^3 and $f: U \to \mathbb{R}$ be a C^2 scalar field. Compute div ∇f in terms of the second partial derivatives of f.

Math 107. Rumbos

3. Let U denote an open region in \mathbb{R}^3 which does not contain the origin (0,0,0)and define $f: U \to \mathbb{R}$ by

$$f(x, y, z) = \frac{1}{r}$$
 where $r = \sqrt{x^2 + y^2 + z^2}$ and $(x, y, z) \in U$.

Compute div ∇f .

4. Let D denote an open region in \mathbb{R}^2 and $f: D \to \mathbb{R}$ denote a scalar field whose second partial derivatives exist in D. Fix $(x, y) \in D$, and define the scalar map

$$S(h,k) = f(x+h, y+k) - f(x+h, y) - f(x, y+k) + f(x, y),$$

where |h| and |k| are sufficiently small.

(a) Apply the Mean Value Theorem to obtain an \overline{x} in the interval (x, x + h), or (x+h, x) (depending on whether h is positive or negative, respectively) such that

$$S(h,k) = \left(\frac{\partial f}{\partial x}(\overline{x}, y+k) - \frac{\partial f}{\partial x}(\overline{x}, y)\right)h.$$

(b) Apply the Mean Value Theorem to obtain a \overline{y} in the interval (y, y + k), or (y + k, y) (depending on whether k is positive or negative, respectively) such that

$$S(h,k) = \frac{\partial^2 f}{\partial y \partial x}(\overline{x}, \overline{y})hk.$$

- 5. (Continuation of Problem 4.)
 - (c) Show that if f is of class C^2 , then

$$\lim_{(h,k)\to(0,0)}\frac{S(h,k)}{hk} = \frac{\partial^2 f}{\partial y \partial x}(x,y).$$

(d) Deduce that if f is of class C^2 , then

$$\frac{\partial^2 f}{\partial y \partial x}(x,y) = \frac{\partial^2 f}{\partial x \partial y}(x,y);$$

that is, the *mixed* second partial derivatives are the same for C^2 maps.

Fall 2007 2