Assignment #13

Due on Wednesday, October 31, 2007

Read Section 7.4 on *The Derivative*, pp. 187–197, in Bressoud.

Read Section 7.6 on *The Chain Rule*, pp. 201–205, in Bressoud.

Do the following problems

- 1. Let D denote an open region in \mathbb{R}^2 and $f: D \to \mathbb{R}$ be a scalar field for which the second partial derivatives exist for all $x \in D$.
 - (a) Compute the Jacobian matrix of the gradient map $\nabla f \colon \mathbb{R}^2 \to \mathbb{R}^2$.
 - (b) Recall that the scalar field f is said to be of class C^2 if its second partial derivatives exist and are continuous on D. Prove that if f is a C^2 map, then the Jacobian matrix of ∇f is a symmetric matrix.
- 2. Let D denote an open region in \mathbb{R}^2 and $f: D \to \mathbb{R}$ be a C^2 scalar field on D. The Jacobian of the gradient map $\nabla f: \mathbb{R}^2 \to \mathbb{R}^2$ is called the *Hessian* of the function f and is denoted by H_f ; that is

$$H_f(x,y) = J_{\nabla f}(x,y).$$

Compute the Hessian for the following scalar fields in \mathbb{R}^2 .

- (a) $f(x,y) = x^2 y^2$ for all $(x,y) \in \mathbb{R}^2$.
- (b) f(x,y) = xy for all $(x,y) \in \mathbb{R}^2$.
- 3. Let A denote a symmetric $n \times n$ matrix; recall that this means that $A^T = A$, where A^T denotes the transpose of A. Define $f \colon \mathbb{R}^n \to \mathbb{R}$ by $f(x) = \frac{1}{2}(Ax) \cdot x$ for all $x \in \mathbb{R}^n$; that is, f(x) is the dot-product of Ax and x. In terms of matrix product,

$$f(x) = \frac{1}{2} (Ax)^T x$$
 for all $x \in \mathbb{R}^n$,

where x is expressed as a column vector.

- (a) Show that f is differentiable and compute the gradient map ∇f .
- (b) Show that the gradient map ∇f is differentiable, and compute its derivative.

Math 107. Rumbos

4. Let I be an open interval of real numbers and U be an open subset of \mathbb{R}^n . Suppose that $\sigma: I \to \mathbb{R}^n$ is a differentiable path and that $f: U \to \mathbb{R}$ is a differentiable scalar field. Assume also that the image of I under $\sigma, \sigma(I)$, is contained in U. Suppose also that the derivative of the path σ satisfies

$$\sigma'(t) = -\nabla f(\sigma(t))$$
 for all $t \in I$.

Show that if the gradient of f along the path σ is never zero, then f decreases along the path as t increases.

Suggestion: Use the Chain Rule to compute the derivative of $f(\sigma(t))$.

5. Exercises 2 and 4 on page 207 in the text.