Assignment \#13

Due on Wednesday, October 31, 2007
Read Section 7.4 on The Derivative, pp. 187-197, in Bressoud.
Read Section 7.6 on The Chain Rule, pp. 201-205, in Bressoud.
Do the following problems

1. Let D denote an open region in \mathbb{R}^{2} and $f: D \rightarrow \mathbb{R}$ be a scalar field for which the second partial derivatives exist for all $x \in D$.
(a) Compute the Jacobian matrix of the gradient map $\nabla f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$.
(b) Recall that the scalar field f is said to be of class C^{2} if its second partial derivatives exist and are continuous on D.
Prove that if f is a C^{2} map, then the Jacobian matrix of ∇f is a symmetric matrix.
2. Let D denote an open region in \mathbb{R}^{2} and $f: D \rightarrow \mathbb{R}$ be a C^{2} scalar field on D. The Jacobian of the gradient map $\nabla f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is called the Hessian of the function f and is denoted by H_{f}; that is

$$
H_{f}(x, y)=J_{\nabla f}(x, y)
$$

Compute the Hessian for the following scalar fields in \mathbb{R}^{2}.
(a) $f(x, y)=x^{2}-y^{2}$ for all $(x, y) \in \mathbb{R}^{2}$.
(b) $f(x, y)=x y$ for all $(x, y) \in \mathbb{R}^{2}$.
3. Let A denote a symmetric $n \times n$ matrix; recall that this means that $A^{T}=A$, where A^{T} denotes the transpose of A. Define $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ by $f(x)=\frac{1}{2}(A x) \cdot x$ for all $x \in \mathbb{R}^{n}$; that is, $f(x)$ is the dot-product of $A x$ and x. In terms of matrix product,

$$
f(x)=\frac{1}{2}(A x)^{T} x \quad \text { for all } x \in \mathbb{R}^{n}
$$

where x is expressed as a column vector.
(a) Show that f is differentiable and compute the gradient map ∇f.
(b) Show that the gradient map ∇f is differentiable, and compute its derivative.
4. Let I be an open interval of real numbers and U ba an open subset of \mathbb{R}^{n}. Suppose that $\sigma: I \rightarrow \mathbb{R}^{n}$ is a differentiable path and that $f: U \rightarrow \mathbb{R}$ is a differentiable scalar field. Assume also that the image of I under $\sigma, \sigma(I)$, is contained in U. Suppose also that the derivative of the path σ satisfies

$$
\sigma^{\prime}(t)=-\nabla f(\sigma(t)) \quad \text { for all } t \in I
$$

Show that if the gradient of f along the path σ is never zero, then f decreases along the path as t increases.

Suggestion: Use the Chain Rule to compute the derivative of $f(\sigma(t))$.
5. Exercises 2 and 4 on page 207 in the text.

