Assignment #14

Due on Friday, November 2, 2007

Read Section 7.4 on *The Derivative*, pp. 187–197, in Bressoud.

Read Section 7.6 on The Chain Rule, pp. 201–205, in Bressoud.

Do the following problems

1. Recall that a set $U \subseteq \mathbb{R}^n$ is said to be **path connected** iff for any vectors x and y in U, there exists a differentiable path $\sigma: [0, 1] \to \mathbb{R}^n$ such that $\sigma(0) = x$, $\sigma(1) = y$ and $\sigma(t) \in U$ for all $t \in [0, 1]$; i.e., any two elements in U can be connected by a differentiable path whose image is entirely contained in U.

Suppose that U is an open, path connected subset of \mathbb{R}^n . Let $f: U \to \mathbb{R}$ be a differentiable scalar field such that $\nabla f(x)$ is the zero vector for all $x \in U$. Prove that f must be constant.

2. Define $f: \mathbb{R}^n \to \mathbb{R}$ by

$$f(x) = ||x||$$
 for all $x \in \mathbb{R}^n$.

- (a) Prove that f is differentiable on $\mathbb{R}^n \setminus \{\mathbf{0}\}$, and compute ∇f on that set. Suggestion: Observe that $||x||^2 = x_1^2 + x_2^2 + \cdots + x_n^2$, compute the partial derivatives of f, and argue that they are continuous on $\mathbb{R}^n \setminus \{\mathbf{0}\}$.
- (b) Let I be and open interval of real numbers, and suppose that $\sigma: I \to \mathbb{R}^n$ is a differentiable path satisfying $\sigma(t) \neq \mathbf{0}$ for all $t \in I$. Show that the function $g: I \to \mathbb{R}$ defined by $g(t) = \|\sigma(t)\|$ for all $t \in I$ is differentiable on I and compute its derivative.
- 3. Exercise 6 on page 208 in the text.
- 4. Let U be an open subset of \mathbb{R}^n and I be an open interval. Suppose that $f: U \to \mathbb{R}$ is a differentiable scalar field and $\sigma: I \to \mathbb{R}^n$ be a differentiable path whose image lies in U. Suppose also that $\sigma'(t)$ is never the zero vector. Show that if f has a local maximum or a local minimum at some point on the path, then ∇f is perpendicular to the path at that point.

Suggestion: Consider the real valued function of a single variable $g(t) = f(\sigma(t))$ for all $t \in I$.

Math 107. Rumbos

5. Let $\sigma: [a, b] \to \mathbb{R}^n$ be a differentiable, one-to-one path. Suppose also that $\sigma'(t)$, is never the zero vector. Let $h: [c, d] \to [a, b]$ be a one-to-one and onto map such that $h'(t) \neq 0$ for all $t \in [c, d]$. Define

$$\gamma(t) = \sigma(h(t))$$
 for all $t \in [c, d]$.

 $\gamma\colon [c,d]\to \mathbb{R}^n$ is a called a reparametrization of σ

- (a) Show that γ is a differentiable, one-to-one path.
- (b) Compute $\gamma'(t)$ and show that it is never the zero vector.
- (c) Show that σ and γ have the same image in \mathbb{R}^n .