## Assignment \#14

Due on Friday, November 2, 2007
Read Section 7.4 on The Derivative, pp. 187-197, in Bressoud.
Read Section 7.6 on The Chain Rule, pp. 201-205, in Bressoud.
Do the following problems

1. Recall that a set $U \subseteq \mathbb{R}^{n}$ is said to be path connected iff for any vectors $x$ and $y$ in $U$, there exists a differentiable path $\sigma:[0,1] \rightarrow \mathbb{R}^{n}$ such that $\sigma(0)=x$, $\sigma(1)=y$ and $\sigma(t) \in U$ for all $t \in[0,1]$; i.e., any two elements in $U$ can be connected by a differentiable path whose image is entirely contained in $U$.
Suppose that $U$ is an open, path connected subset of $\mathbb{R}^{n}$. Let $f: U \rightarrow \mathbb{R}$ be a differentiable scalar field such that $\nabla f(x)$ is the zero vector for all $x \in U$. Prove that $f$ must be constant.
2. Define $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ by

$$
f(x)=\|x\| \quad \text { for all } x \in \mathbb{R}^{n}
$$

(a) Prove that $f$ is differentiable on $\mathbb{R}^{n} \backslash\{\mathbf{0}\}$, and compute $\nabla f$ on that set.

Suggestion: Observe that $\|x\|^{2}=x_{1}^{2}+x_{2}^{2}+\cdots+x_{n}^{2}$, compute the partial derivatives of $f$, and argue that they are continuous on $\mathbb{R}^{n} \backslash\{\mathbf{0}\}$.
(b) Let $I$ be and open interval of real numbers, and suppose that $\sigma: I \rightarrow \mathbb{R}^{n}$ is a differentiable path satisfying $\sigma(t) \neq \mathbf{0}$ for all $t \in I$. Show that the function $g: I \rightarrow \mathbb{R}$ defined by $g(t)=\|\sigma(t)\|$ for all $t \in I$ is differentiable on $I$ and compute its derivative.
3. Exercise 6 on page 208 in the text.
4. Let $U$ be an open subset of $\mathbb{R}^{n}$ and $I$ be an open interval. Suppose that $f: U \rightarrow$ $\mathbb{R}$ is a differentiable scalar field and $\sigma: I \rightarrow \mathbb{R}^{n}$ be a differentiable path whose image lies in $U$. Suppose also that $\sigma^{\prime}(t)$ is never the zero vector. Show that if $f$ has a local maximum or a local minimum at some point on the path, then $\nabla f$ is perpendicular to the path at that point.

Suggestion: Consider the real valued function of a single variable $g(t)=f(\sigma(t))$ for all $t \in I$.
5. Let $\sigma:[a, b] \rightarrow \mathbb{R}^{n}$ be a differentiable, one-to-one path. Suppose also that $\sigma^{\prime}(t)$, is never the zero vector. Let $h:[c, d] \rightarrow[a, b]$ be a one-to-one and onto map such that $h^{\prime}(t) \neq 0$ for all $t \in[c, d]$. Define

$$
\gamma(t)=\sigma(h(t)) \quad \text { for all } t \in[c, d] .
$$

$\gamma:[c, d] \rightarrow \mathbb{R}^{n}$ is a called a reparametrization of $\sigma$
(a) Show that $\gamma$ is a differentiable, one-to-one path.
(b) Compute $\gamma^{\prime}(t)$ and show that it is never the zero vector.
(c) Show that $\sigma$ and $\gamma$ have the same image in $\mathbb{R}^{n}$.

