Assignment \#19

Due on Monday, November 19, 2007
Read Chapter 4 on Differential Forms, pp. 77-110, in Bressoud.
Do the following problems

1. Exercise 2 on page 86 in the text.
2. Exercises 3 and 4 on pages 86 and 87 in the text.
3. Exercises 1(b) and $1(\mathrm{~d})$ on page 96 in the text.
4. Show that the directed line segment $\left[P_{1}, P_{2}\right]$ is the smallest convex set that contains the points P_{1} and P_{2} in \mathbb{R}^{2}; that is, if A is any convex set in \mathbb{R}^{2} which contains the points P_{1} and P_{2}, then

$$
\left[P_{1}, P_{2}\right] \subseteq A
$$

5. Let P_{1}, P_{2} and P_{3} be three non-collinear points in \mathbb{R}^{2}. Show that the oriented triangle $T=\left[P_{1}, P_{2}, P_{3}\right]$ is the set

$$
T=\left\{\alpha \overrightarrow{O P_{1}}+\beta \overrightarrow{O P_{2}}+\gamma \overrightarrow{O P_{3}} \mid \alpha \geqslant 0, \beta \geqslant 0, \gamma \geqslant 0, \text { and } \alpha+\beta+\gamma=1\right\}
$$

where O denotes the origin in \mathbb{R}^{2}. The expression

$$
\alpha \overrightarrow{O P_{1}}+\beta \overrightarrow{O P_{2}}+\gamma \overrightarrow{O P_{3}}
$$

where α, β and γ are positive real numbers which add up to 1 is called a convex combination of the vectors $\overrightarrow{O P_{1}}, \overrightarrow{O P_{2}}$ and $\overrightarrow{O P_{3}}$.

