Assignment #19

Due on Monday, November 19, 2007

Read Chapter 4 on Differential Forms, pp. 77–110, in Bressoud.

Do the following problems

- 1. Exercise 2 on page 86 in the text.
- 2. Exercises 3 and 4 on pages 86 and 87 in the text.
- 3. Exercises 1(b) and 1(d) on page 96 in the text.
- 4. Show that the directed line segment $[P_1, P_2]$ is the smallest convex set that contains the points P_1 and P_2 in \mathbb{R}^2 ; that is, if A is any convex set in \mathbb{R}^2 which contains the points P_1 and P_2 , then

$$[P_1, P_2] \subseteq A$$
.

5. Let P_1 , P_2 and P_3 be three non-collinear points in \mathbb{R}^2 . Show that the oriented triangle $T = [P_1, P_2, P_3]$ is the set

$$T = \{\alpha \overrightarrow{OP_1} + \beta \overrightarrow{OP_2} + \gamma \overrightarrow{OP_3} \mid \alpha \geqslant 0, \beta \geqslant 0, \gamma \geqslant 0, \text{ and } \alpha + \beta + \gamma = 1\},$$

where O denotes the origin in \mathbb{R}^2 . The expression

$$\alpha \overrightarrow{OP_1} + \beta \overrightarrow{OP_2} + \gamma \overrightarrow{OP_3},$$

where α , β and γ are positive real numbers which add up to 1 is called a *convex combination* of the vectors $\overrightarrow{OP_1}$, $\overrightarrow{OP_2}$ and $\overrightarrow{OP_3}$.