Assignment \#21

Due on Friday, November 30, 2007
Read on The Fundamental Theorem of Calculus, pp. 279-320 in Chapter 10 of Bressoud's book.

Background and Definitions

Green's Theorem. The Fundamental Theorem of Calculus,

$$
\int_{M} \mathrm{~d} \omega=\int_{\partial M} \omega
$$

takes the following form in two-dimensional Euclidean space:
Let R denote a region in \mathbb{R}^{2} bounded by a simple closed curve, $\partial \mathbb{R}$, made up of a finite number of C^{1} paths traversed in the counterclockwise sense. Let P and Q denote two C^{1} scalar fields defined on some open set containing R and its boundary, ∂R. Then,

$$
\begin{equation*}
\int_{R}\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) \mathrm{d} x \mathrm{~d} y=\int_{\partial R} P \mathrm{~d} x+Q \mathrm{~d} y . \tag{1}
\end{equation*}
$$

Do the following problems

1. Apply Green's Theorem, as expressed in the formula (1), to the functions $P(x, y)=-y$ and $Q(x, y)=x$ to derive the formula

$$
\begin{equation*}
\operatorname{area}(R)=\frac{1}{2} \int_{\partial R}-y \mathrm{~d} x+x \mathrm{~d} y \tag{2}
\end{equation*}
$$

to compute the area of the region R.
2. Use the formula (2) derived in the previous theorem to compute the area enclosed by the ellipse

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1,
$$

where a and b are positive real numbers.
3. In Problem 2(b) of Assignment \#20, you showed that another form of Fundamental Theorem of Calculus is

$$
\int_{R} \operatorname{div}(F) \mathrm{d} x \mathrm{~d} y=\text { Flux of } F \text { across } \partial R \text {; }
$$

that is, the flux of F across the boundary of R is the double integral of the divergence of F over the region R. Writing $F=P \widehat{i}+Q \widehat{j}$, the above form of the Fundamental Theorem of Calculus takes the form

$$
\begin{equation*}
\int_{R}\left(\frac{\partial P}{\partial x}+\frac{\partial Q}{\partial y}\right) \mathrm{d} x \mathrm{~d} y=\int_{\partial R} F \cdot \widehat{n} \mathrm{~d} s \tag{3}
\end{equation*}
$$

where \widehat{n} is a unit vector perpendicular to ∂R and pointing to the outside of ∂R.
Use formula (3) to compute the flux of the field $F=x \widehat{i}+y \widehat{j}$ across the square with vertices $(-1,-1),(1,-1),(1,1)$ and $(-1,1)$.
4. Let f and g be two scalar fields defined on some open subset of \mathbb{R}^{2}. Suppose that f and g are C^{1} and that ∇g is a C^{1} vector field. Show that

$$
\operatorname{div}(f \nabla g)=\nabla f \cdot \nabla g+f \operatorname{div}(\nabla g)
$$

$\operatorname{div}(\nabla g)$ is called the Laplacian of g and is usually denoted by Δg; thus,

$$
\Delta g=\frac{\partial^{2} g}{\partial x^{2}}+\frac{\partial^{2} g}{\partial y^{2}}
$$

5. Let f and g be as in the previous problem. Use formula (3) and the result from the previous problem to show that

$$
\int_{R} f \Delta g \mathrm{~d} x \mathrm{~d} y=\int_{\partial R} f \frac{\partial g}{\partial n} \mathrm{~d} s-\int_{R} \nabla f \cdot \nabla g \mathrm{~d} x \mathrm{~d} y
$$

where $\frac{\partial g}{\partial n}$ denotes the derivative of g in the direction of \widehat{n}, or $D_{\widehat{n}} g$.

