Assignment #3

Due on Wednesday September 19, 2007

Read Chapter 2 on Vector Algebra, pp. 29–49, in Bressoud.

Do the following problems

- 1. The vectors $v_1 = \begin{pmatrix} -1 \\ 1 \\ 2 \end{pmatrix}$, and $\vec{v}_2 = \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}$ span a two-dimensional subspace in \mathbb{R}^3 , in other words, a plane through the origin. Give two unit vectors which are orthogonal to each other, and which also span the plane.
- 2. Use an appropriate orthogonal projection to compute the shortest distance from the point P(1,1,2) to the plane in \mathbb{R}^3 whose equation is

$$2x + 3y - z = 6.$$

3. The dual space of of \mathbb{R}^n , denoted $(\mathbb{R}^n)^*$, is the vector space of all linear transformations from \mathbb{R}^n to \mathbb{R} .

For a given $w \in \mathbb{R}^n$, define $T_w : \mathbb{R}^n \to \mathbb{R}$ by

$$T_w(v) = w \cdot v$$
 for all $v \in \mathbb{R}^n$.

Show that T_w is an element of the dual of \mathbb{R}^n for all $w \in \mathbb{R}^n$.

- 4. Exercise 19 on page 51 in the text.
- 5. Exercise 20 on page 51 in the text.