Assignment \#5

Due on Monday September 24, 2007
Read Section 7,1 on Limits, pp. 171-178, in Bressoud.
Do the following problems

1. A subset, U, of \mathbb{R}^{n} is said to be open if for any $x \in U$ there exists a positive number r such that

$$
B_{r}(x)=\left\{y \in \mathbb{R}^{n} \mid\|y-x\|<r\right\}
$$

is entirely contained in U.
(The empty set, \emptyset, is considered to be an open set.)
(a) Show that if U_{1} and U_{2} are open subsets of \mathbb{R}^{n}, then their intersection

$$
U_{1} \cap U_{2}=\left\{y \in \mathbb{R}^{n} \mid y \in U_{1} \text { and } y \in U_{2}\right\}
$$

is also open.
(b) Show that the set

$$
\left\{\left.\binom{x}{y} \in \mathbb{R}^{2} \right\rvert\, y=0\right\}
$$

is not an open subset of \mathbb{R}^{2}.
2. In problem 2 of Assignment \#4 you proved that every linear transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}$ must be of the form

$$
T(v)=w \cdot v \quad \text { for every } \quad v \in \mathbb{R}^{n} .
$$

Use this fact together with the Cauchy-Schwarz inequality to prove that T is continuous at every point in \mathbb{R}^{n}.
3. A subset, U, of \mathbb{R}^{n} is said to be convex if given any two points x and y in U, the straight line segment connecting them is entirely contained in U; in symbols,

$$
\left\{x+t(y-x) \in \mathbb{R}^{n} \mid 0 \leq t \leqslant 1\right\} \subseteq U
$$

(a) Prove that the ball $B_{r}(O)=\left\{x \in \mathbb{R}^{n} \mid\|x\|<R\right\}$ is a convex subset of \mathbb{R}^{n}.
(b) Prove that the "punctured unit disc" in \mathbb{R}^{2},

$$
\left\{\left.\binom{x}{y} \in \mathbb{R}^{2} \right\rvert\, 0<x^{2}+y^{2}<1\right\}
$$

is not a convex set.
4. Let x and y denote real numbers.
(a) Starting with the self-evident inequality: $(|x|-|y|)^{2} \geqslant 0$, derive the inequality

$$
|x y| \leqslant \frac{1}{2}\left(x^{2}+y^{2}\right)
$$

(b) Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be defined by

$$
f(x, y)= \begin{cases}\frac{x y}{\sqrt{x^{2}+y^{2}}} & \text { if }(x, y) \neq(0,0) \\ 0 & \text { if }(x, y)=(0,0)\end{cases}
$$

Use the inequality derived in the previous part to prove that f is continuous at the origin.
5. Exercise 10 on page 180 in the text.

