Assignment \#8

Due on Friday October 5, 2007
Read Section 7.4 on The Derivative, pp. 187-197, in Bressoud.
Do the following problems

1. Let f denote some real valued function defined on some open interval around $a \in \mathbb{R}$. Consider a line of slope m and equation

$$
L(x)=f(a)+m(x-a) \text { for all } x \in \mathbb{R}
$$

Suppose that this line if the best approximation to the function f at a in the sense that

$$
\lim _{x \rightarrow a} \frac{|E(x)|}{|x-a|}=0
$$

where $E(x)=f(x)-L(x)$ for all x in the interval in which f is defined.
Prove that f is differentiable at a, and that $f^{\prime}(a)=m$.
2. Recall that a function $F: U \rightarrow \mathbb{R}^{m}$, where U is an open subset for \mathbb{R}^{n}, is said to be differentiable at $x \in U$ if and only if there exists a unique linear transformation $T_{x}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ such that

$$
\lim _{\|y-x\| \rightarrow 0} \frac{\left\|F(y)-F(x)-T_{x}(y-x)\right\|}{\|y-x\|}=0 .
$$

Prove that if F is differentiable at x, then it is also continuous at x.
Give an example that shows that the converse of this assertion is not true
3. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be defined by $f(x, y)=\sqrt{|x y|}$ for all $(x, y) \in \mathbb{R}^{2}$. Show that f is not differentiable at $(0,0)$.
4. Exercise 4 on page 197 in the text.
5. Exercise 6 on page 197 in the text.

