Exam 1

October 17, 2007

Name: _

This is a closed book exam. Show all significant work and justify all your answers. Use your own paper and/or the paper provided by the instructor. You have 50 minutes to work on the following 4 problems. Relax.

- 1. The points (1,0,0), (0,2,0) and (0,0,3) determine a unique plane in three dimensional Euclidean space, \mathbb{R}^3 .
 - (a) Give the equation of the plane.
 - (b) Find the point on the plane which is the closest to the origin in \mathbb{R}^3 .
 - (c) Find the (shortest) distance from the plane to the origin in \mathbb{R}^3 .
 - (d) Give an expression for the line segment connecting the origin to its closest point on the plane.
- 2. Let D denote an open subset of the xy-plane, \mathbb{R}^2 , and let $F: D \to \mathbb{R}^2$ be a vector valued function defined on D.
 - (a) State precisely what it means for F to be continuous at $(x_o, y_o) \in D$.
 - (b) Let f and g denote scalar fields defined on D and define $F: D \to \mathbb{R}^2$ by

$$F(x,y) = \begin{pmatrix} f(x,y) \\ g(x,y) \end{pmatrix} \text{ for all } (x,y) \in D.$$

Prove that F is continuous at $(x_o, y_o) \in D$ if and only if f and g are both continuous at (x_o, y_o) .

- 3. Let U denote an open subset of \mathbb{R}^n , and let $f: U \to \mathbb{R}$ be a scalar field on U.
 - (a) State precisely what it means for f to be differentiable at $x \in U$.
 - (b) Fix a vector v in \mathbb{R}^n and define the scalar field $f: \mathbb{R}^n \to \mathbb{R}$ by

 $f(x) = v \cdot x$ for all $x \in \mathbb{R}^n$;

that is, f(x) is the dot product of x with the vector v.

Show that f is differentiable at every x in \mathbb{R}^n and compute the linear map $Df(x): \mathbb{R}^n \to \mathbb{R}$ for all $x \in \mathbb{R}^n$. What is the gradient of f at x for all $x \in \mathbb{R}^n$?

4. Let $r = \sqrt{x^2 + y^2}$ for all $(x, y) \in \mathbb{R}^2$. Compute ∇r and give its domain.