Exam 1

October 17, 2007
Name: \qquad
This is a closed book exam. Show all significant work and justify all your answers. Use your own paper and/or the paper provided by the instructor. You have 50 minutes to work on the following 4 problems. Relax.

1. The points $(1,0,0),(0,2,0)$ and $(0,0,3)$ determine a unique plane in three dimensional Euclidean space, \mathbb{R}^{3}.
(a) Give the equation of the plane.
(b) Find the point on the plane which is the closest to the origin in \mathbb{R}^{3}.
(c) Find the (shortest) distance from the plane to the origin in \mathbb{R}^{3}.
(d) Give an expression for the line segment connecting the origin to its closest point on the plane.
2. Let D denote an open subset of the $x y$-plane, \mathbb{R}^{2}, and let $F: D \rightarrow \mathbb{R}^{2}$ be a vector valued function defined on D.
(a) State precisely what it means for F to be continuous at $\left(x_{o}, y_{o}\right) \in D$.
(b) Let f and g denote scalar fields defined on D and define $F: D \rightarrow \mathbb{R}^{2}$ by

$$
F(x, y)=\binom{f(x, y)}{g(x, y)} \quad \text { for all } \quad(x, y) \in D
$$

Prove that F is continuous at $\left(x_{o}, y_{o}\right) \in D$ if and only if f and g are both continuous at $\left(x_{o}, y_{o}\right)$.
3. Let U denote an open subset of \mathbb{R}^{n}, and let $f: U \rightarrow \mathbb{R}$ be a scalar field on U.
(a) State precisely what it means for f to be differentiable at $x \in U$.
(b) Fix a vector v in \mathbb{R}^{n} and define the scalar field $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ by

$$
f(x)=v \cdot x \quad \text { for all } x \in \mathbb{R}^{n}
$$

that is, $f(x)$ is the dot product of x with the vector v.
Show that f is differentiable at every x in \mathbb{R}^{n} and compute the linear map $D f(x): \mathbb{R}^{n} \rightarrow \mathbb{R}$ for all $x \in \mathbb{R}^{n}$. What is the gradient of f at x for all $x \in \mathbb{R}^{n}$?
4. Let $r=\sqrt{x^{2}+y^{2}}$ for all $(x, y) \in \mathbb{R}^{2}$. Compute ∇r and give its domain.

