Review Problems for Exam 1

1. Compute the (shortest) distance from the point P(4, 0, -7) in \mathbb{R}^3 to the plane given by

$$4x - y - 3z = 12$$

2. Compute the (shortest) distance from the point P(4, 0, -7) in \mathbb{R}^3 to the line given by the parametric equations

$$\begin{cases} x = -1 + 4t \\ y = -7t \\ z = 2 - t \end{cases}$$

- 3. Compute the area of the triangle whose vertices in \mathbb{R}^3 are the points (1,1,0), (2,0,1) and (0,3,1)
- 4. Let v and w be two vectors in \mathbb{R}^3 , and let λ be a scalar. Show that the area of the parallelogram determined by the vectors v and $w + \lambda v$ is the same as that determined by v and w.
- 5. Let \hat{u} denote a unit vector in \mathbb{R}^n and $P_{\hat{u}}(v)$ denote the orthogonal projection of v along the direction of \hat{u} for any vector $v \in \mathbb{R}^n$. Use the Cauchy–Schwarz inequality to prove that the map

$$v \mapsto P_{\widehat{u}}(v)$$
 for all $v \in \mathbb{R}^n$

is a continuous map from \mathbb{R}^n to \mathbb{R}^n .

6. Define the scalar field $f: \mathbb{R}^n \to \mathbb{R}$ by

$$f(x) = \frac{1}{2} ||x||^2$$
 for all $x \in \mathbb{R}^n$.

Show that f is differentiable on \mathbb{R}^n and compute the linear map $Df(x) \colon \mathbb{R}^n \to \mathbb{R}$ for all $x \in \mathbb{R}^n$. What is the gradient of f at x for all $x \in \mathbb{R}^n$?

7. A bug finds itself in a plate on the xy-plane whose temperature at any point (x, y) is given by the function

$$T(x,y) = \frac{32}{2+x^2-2x+y^2}$$
 for $(x,y) \in \mathbb{R}^2$.

Suppose the bug is at the origin and wishes to move in a direction at which the temperature is increasing the fastest. In which direction should the bug move? What is the rate of change of temperature in that direction?

Math 107. Rumbos

8. Let $g: [0, \infty) \to \mathbb{R}$ be a differentiable, real-valued function of a single variable, and let f(x, y) = g(r) where $r = \sqrt{x^2 + y^2}$.

(a) Compute
$$\frac{\partial r}{\partial x}$$
 in terms of x and r, and $\frac{\partial r}{\partial y}$ in terms of y and r.

(b) Compute ∇f in terms of g'(r), r and the vector $\mathbf{r} = x\hat{i} + y\hat{j}$.

- 9. Let I denote an open interval in \mathbb{R} , and suppose that the path $\sigma: I \to \mathbb{R}^n$ is differentiable at $t \in I$.
 - (a) Show that the linear map $D\sigma(t)\mathbb{R} \to \mathbb{R}^n$ is of the form

$$D\sigma(t)(h) = hv$$
 for all $h \in \mathbb{R}$,

where the vector $\mathbf{v}(t)$ is obtained from

$$\mathbf{v} = D\sigma(t)(1);$$

that is, $\mathbf{v}(t)$ is the image of the real number 1 under the linear transformation $D\sigma(t)$.

(b) Write $\sigma(t) = (x_1(t), x_2(t), \dots, x_n(t))$ for all $t \in I$, and

 $\mathbf{v}(t) = (v_1(t), v_2(t), \dots, v_n(t))$

for all $t \in I$. Show that if $\sigma: I \to \mathbb{R}^n$ is differentiable at $t \in I$ and $\mathbf{v} = D\sigma(t)(1)$, then each function $x_j: I \to \mathbb{R}$, for j = 1, 2, ..., n, is differentiable at t, and

$$x'_j(t) = v_j(t).$$

Notation: If $\sigma: I \to \mathbb{R}^n$ is differentiable at every $t \in I$, the vector valued function $\mathbf{v}: I \to \mathbb{R}^n$ given by $\mathbf{v}(t) = D\sigma(t)(1)$ is called the *velocity* of the path σ .

- 10. Let U denote an open subset of \mathbb{R}^n . Suppose that $F: U \to \mathbb{R}^m$ and $G: U \to \mathbb{R}^m$ is vector valued functions.
 - (a) Explain how the scalar product $F \cdot G$ is defined.
 - (b) Prove that if both F and G are both differentiable at $x \in U$, the so is $F \cdot G$.
 - (c) Define the scalar field $f: U \to \mathbb{R}$ by

$$f(x) = (F \cdot G)(x)$$
 for all $x \in U$.

If F and G are both differentiable at $x \in U$, compute $\nabla f(x)$.

Fall 2007 2