Review Problems for Exam 1

1. Compute the (shortest) distance from the point $P(4,0,-7)$ in \mathbb{R}^{3} to the plane given by

$$
4 x-y-3 z=12
$$

2. Compute the (shortest) distance from the point $P(4,0,-7)$ in \mathbb{R}^{3} to the line given by the parametric equations

$$
\left\{\begin{array}{l}
x=-1+4 t \\
y=-7 t \\
z=2-t
\end{array}\right.
$$

3. Compute the area of the triangle whose vertices in \mathbb{R}^{3} are the points $(1,1,0)$, $(2,0,1)$ and $(0,3,1)$
4. Let v and w be two vectors in \mathbb{R}^{3}, and let λ be a scalar. Show that the area of the parallelogram determined by the vectors v and $w+\lambda v$ is the same as that determined by v and w.
5. Let \widehat{u} denote a unit vector in \mathbb{R}^{n} and $P_{\widehat{u}}(v)$ denote the orthogonal projection of v along the direction of \widehat{u} for any vector $v \in \mathbb{R}^{n}$. Use the Cauchy-Schwarz inequality to prove that the map

$$
v \mapsto P_{\widehat{u}}(v) \text { for all } v \in \mathbb{R}^{n}
$$

is a continuous map from \mathbb{R}^{n} to \mathbb{R}^{n}.
6. Define the scalar field $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ by

$$
f(x)=\frac{1}{2}\|x\|^{2} \quad \text { for all } \quad x \in \mathbb{R}^{n}
$$

Show that f is differentiable on \mathbb{R}^{n} and compute the linear map $D f(x): \mathbb{R}^{n} \rightarrow \mathbb{R}$ for all $x \in \mathbb{R}^{n}$. What is the gradient of f at x for all $x \in \mathbb{R}^{n}$?
7. A bug finds itself in a plate on the $x y$-plane whose temperature at any point (x, y) is given by the function

$$
T(x, y)=\frac{32}{2+x^{2}-2 x+y^{2}} \quad \text { for } \quad(x, y) \in \mathbb{R}^{2}
$$

Suppose the bug is at the origin and wishes to move in a direction at which the temperature is increasing the fastest. In which direction should the bug move? What is the rate of change of temperature in that direction?
8. Let $g:[0, \infty) \rightarrow \mathbb{R}$ be a differentiable, real-valued function of a single variable, and let $f(x, y)=g(r)$ where $r=\sqrt{x^{2}+y^{2}}$.
(a) Compute $\frac{\partial r}{\partial x}$ in terms of x and r, and $\frac{\partial r}{\partial y}$ in terms of y and r.
(b) Compute ∇f in terms of $g^{\prime}(r), r$ and the vector $\mathbf{r}=x \widehat{i}+y \widehat{j}$.
9. Let I denote an open interval in \mathbb{R}, and suppose that the path $\sigma: I \rightarrow \mathbb{R}^{n}$ is differentiable at $t \in I$.
(a) Show that the linear map $D \sigma(t) \mathbb{R} \rightarrow \mathbb{R}^{n}$ is of the form

$$
D \sigma(t)(h)=h v \quad \text { for all } h \in \mathbb{R}
$$

where the vector $\mathbf{v}(t)$ is obtained from

$$
\mathbf{v}=D \sigma(t)(1)
$$

that is, $\mathbf{v}(t)$ is the image of the real number 1 under the linear transformation $D \sigma(t)$.
(b) Write $\sigma(t)=\left(x_{1}(t), x_{2}(t), \ldots, x_{n}(t)\right)$ for all $t \in I$, and

$$
\mathbf{v}(t)=\left(v_{1}(t), v_{2}(t), \ldots, v_{n}(t)\right)
$$

for all $t \in I$. Show that if $\sigma: I \rightarrow \mathbb{R}^{n}$ is differentiable at $t \in I$ and $\mathbf{v}=$ $D \sigma(t)(1)$, then each function $x_{j}: I \rightarrow \mathbb{R}$, for $j=1,2, \ldots, n$, is differentiable at t, and

$$
x_{j}^{\prime}(t)=v_{j}(t) .
$$

Notation: If $\sigma: I \rightarrow \mathbb{R}^{n}$ is differentiable at every $t \in I$, the vector valued function $\mathbf{v}: I \rightarrow \mathbb{R}^{n}$ given by $\mathbf{v}(t)=D \sigma(t)(1)$ is called the velocity of the path σ.
10. Let U denote an open subset of \mathbb{R}^{n}. Suppose that $F: U \rightarrow \mathbb{R}^{m}$ and $G: U \rightarrow \mathbb{R}^{m}$ is vector valued functions.
(a) Explain how the scalar product $F \cdot G$ is defined.
(b) Prove that if both F and G are both differentiable at $x \in U$, the so is $F \cdot G$.
(c) Define the scalar field $f: U \rightarrow \mathbb{R}$ by

$$
f(x)=(F \cdot G)(x) \quad \text { for all } x \in U
$$

If F and G are both differentiable at $x \in U$, compute $\nabla f(x)$.

