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Review Problems for Exam 1

1. Compute the (shortest) distance from the point P (4, 0,−7) in R3 to the plane
given by

4x− y − 3z = 12.

2. Compute the (shortest) distance from the point P (4, 0,−7) in R3 to the line
given by the parametric equations

x = −1 + 4t
y = −7t
z = 2− t

3. Compute the area of the triangle whose vertices in R3 are the points (1, 1, 0),
(2, 0, 1) and (0, 3, 1)

4. Let v and w be two vectors in R3, and let λ be a scalar. Show that the area of
the parallelogram determined by the vectors v and w + λv is the same as that
determined by v and w.

5. Let û denote a unit vector in Rn and Pû(v) denote the orthogonal projection
of v along the direction of û for any vector v ∈ Rn. Use the Cauchy–Schwarz
inequality to prove that the map

v 7→ Pû(v) for all v ∈ Rn

is a continuous map from Rn to Rn.

6. Define the scalar field f : Rn → R by

f(x) =
1

2
‖x‖2 for all x ∈ Rn.

Show that f is differentiable on Rn and compute the linear map Df(x) : Rn → R
for all x ∈ Rn. What is the gradient of f at x for all x ∈ Rn?

7. A bug finds itself in a plate on the xy–plane whose temperature at any point
(x, y) is given by the function

T (x, y) =
32

2 + x2 − 2x + y2
for (x, y) ∈ R2.

Suppose the bug is at the origin and wishes to move in a direction at which the
temperature is increasing the fastest. In which direction should the bug move?
What is the rate of change of temperature in that direction?
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8. Let g : [0,∞) → R be a differentiable, real–valued function of a single variable,
and let f(x, y) = g(r) where r =

√
x2 + y2.

(a) Compute
∂r

∂x
in terms of x and r, and

∂r

∂y
in terms of y and r.

(b) Compute ∇f in terms of g′(r), r and the vector r = x̂i + yĵ.

9. Let I denote an open interval in R, and suppose that the path σ : I → Rn is
differentiable at t ∈ I.

(a) Show that the linear map Dσ(t)R → Rn is of the form

Dσ(t)(h) = hv for all h ∈ R,

where the vector v(t) is obtained from

v = Dσ(t)(1);

that is, v(t) is the image of the real number 1 under the linear transfor-
mation Dσ(t).

(b) Write σ(t) = (x1(t), x2(t), . . . , xn(t)) for all t ∈ I, and

v(t) = (v1(t), v2(t), . . . , vn(t))

for all t ∈ I. Show that if σ : I → Rn is differentiable at t ∈ I and v =
Dσ(t)(1), then each function xj : I → R, for j = 1, 2, . . . , n, is differentiable
at t, and

x′
j(t) = vj(t).

Notation: If σ : I → Rn is differentiable at every t ∈ I, the vector valued
function v : I → Rn given by v(t) = Dσ(t)(1) is called the velocity of the
path σ.

10. Let U denote an open subset of Rn. Suppose that F : U → Rm and G : U → Rm

is vector valued functions.

(a) Explain how the scalar product F ·G is defined.

(b) Prove that if both F and G are both differentiable at x ∈ U , the so is
F ·G.

(c) Define the scalar field f : U → R by

f(x) = (F ·G)(x) for all x ∈ U.

If F and G are both differentiable at x ∈ U , compute ∇f(x).


