Exam 2

December 7, 2007
Name: \qquad
This is a closed book exam. Show all significant work and justify all your answers. Use your own paper and/or the paper provided by the instructor. You have 50 minutes to work on the following 3 problems. Relax.

1. Let $f: U \rightarrow \mathbb{R}$ be a C^{1} scalar field defined on an open subset, U, of \mathbb{R}^{n} such that $\nabla f(x) \neq \overrightarrow{0}$ for all $x \in U$. Let $\sigma:[a, b] \rightarrow \mathbb{R}^{n}$ be a C^{1} path whose image is contained in U. Assume that

$$
\sigma^{\prime}(t)=-\nabla f(\sigma(t)) \quad \text { for all } t \in(a, b) .
$$

Show that the function $g(t)=f(\sigma(t))$ for all $t \in[a, b]$ is strictly decreasing on (a, b).
2. Consider the cycloid parametrized by

$$
\sigma(t)=(t-\sin t, 1-\cos t) \quad \text { for } t \in \mathbb{R}
$$

where t is measured in seconds.
(a) Give the equation of the tangent line to the cycloid at the point $\left(\frac{3 \pi}{2}+1,1\right)$.
(b) Suppose a particle is moving along the cycloid and goes off on a tangent at the point $\left(\frac{3 \pi}{2}+1,1\right)$. How many seconds later will the particle hit the x-axis?
3. Let C denote the boundary, ∂R, of the square, R, in $x y$-plane with vertices $(0,0),(2,-1),(3,1)$ and $(1,2)$ traversed in the counterclockwise sense.

Evaluate the following:
(a) $\int_{C} y \mathrm{~d} x+x \mathrm{~d} y$.
(b) $\int_{R}(2 x-y) \mathrm{d} x \mathrm{~d} y$.
(BONUS) Compute the arc length along the portion of the cycloid in Problem 2 from $(0,0)$ to $(2 \pi, 0)$.

