Assignment \#11

Due on Wednesday, November 14, 2007
Read Section 4.2 on An Introduction to Probability, pp. 116-127, in Allman and Rhodes.

Read Section 4.3 on Conditional Probabilities, pp. 130-134, in Allman and Rhodes.

Read Chapter 5 on Modeling Bacterial Mutations in the class lecture notes, starting on page 45, at http://pages.pomona.edu/~ajr04747/

Do the following problems

1. Let $M(t)$ denote number of bacteria in a colony of initial size N_{o} which develop mutations in the time interval $[0, t]$. It was shown in the lectures that if there are no mutations at time $t=0$, and if $M(t)$ follows the assumptions of a Poisson process, then the probability of no mutations in the time interval $[0, t]$ is given by

$$
P_{0}(t)=P[M(t)=0]=e^{-\lambda t}
$$

where $\lambda>0$ is the average number of mutations per unit time, or the mutation rate.

Let $T>0$ denote the time at which the first mutation occurs.
(a) Explain why T is a random variable. Observe that it is a continuous random variable.
(b) For any $t>0$, explain why the statement

$$
P[T>t]=P[M(t)=0]
$$

is true, and use it to compute

$$
F(t)=P[T \leq t]
$$

The function $F(t)$, usually denoted by $F_{T}(t)$, is called the cumulative distribution function, or cdf, of the random variable T.
(c) Compute the derivative $f(t)=F^{\prime}(t)$ of the cdf F obtained in the previous part.
The function $f(t)$, usually denoted by $f_{T}(t)$, is called the probability density function, or pdf, of the random variable T.
2. Given a continuous random variable X with pdf f_{X}, the expected value of X is defined to be

$$
E(X)=\int_{-\infty}^{\infty} x f_{X}(x) d x
$$

Use this formula to compute the expected value of the T, where T is the random variable defined in the previous problem; that is, $T>0$ is he time at which the first mutation occurs for a bacterial colony exposed to a virus at time $t=0$, assuming that there are no mutations at that time. How does this value relate to the average mutation rate λ ?
3. Given a discrete random variable X with a finite number of possible values

$$
x_{1}, x_{2}, x_{3}, \ldots, x_{N}
$$

the expected value of X is defined to be the sum

$$
E(X)=\sum_{i=1}^{N} x_{i} P\left[X=x_{i}\right]
$$

Use this formula to compute the expected value of the numbers appearing on the top face of a fair die. Explain the meaning of this number.
4. Consider the following random experiment: Assume you have a fair die and you toss it until you get a six on the top face, and then you stop. Let X denote the number of tosses you make until you stop.
(a) Explain why X is a discrete random variable. What are the possible value for X ?
(b) For each value x of X, compute $P[X=x]$; this is called the probability mass function, or pmf, of the random variable X.
5. Given a discrete random variable X with an infinite number of possible values

$$
x_{1}, x_{2}, x_{3}, \ldots
$$

the expected value of X is defined to be the infinite series

$$
E(X)=\sum_{i=1}^{\infty} x_{i} P\left[X=x_{i}\right]
$$

Use this formula to compute the expected value random variable X of the previous problem; that is, X is the number of times you need to toss a fair die until you get a six on the top face.

