Assignment \#7

Due on Friday, October 26, 2007
Read Section 2.3 on the continuous approach to modeling bacterial growth, p. 24, in the class lecture notes webpage at http://pages.pomona.edu/~ajr04747
Do the following problems

1. Suppose the growth of a population is governed by the differential equation

$$
\frac{d N}{d t}=-k N
$$

where k is a positive constant.
(a) Explain why this model predicts that the population will decrease as time increases.
(b) If the population at $t=0$ is N_{o}, find the time t, in terms of k, at which the population will be reduced by half.
2. Consider a bacterial population whose relative growth rate is given by

$$
\frac{1}{N} \frac{d N}{d t}=K
$$

where $K=K(t)$ is a continuous function of time, t.
(a) Suppose that $N_{o}=N(0)$ is the initial population density. Verify that

$$
N(t)=N_{o} \exp \left(\int_{0}^{t} K(\tau) \mathrm{d} \tau\right)
$$

solves the differential equation and satisfies the initial condition.
(b) Find $N(t)$ if $K(t)=\left\{\begin{array}{ll}1-t & \text { if } 0 \leq t \leq 1 \\ 0 & \text { if } t>1\end{array}\right.$. Sketch the graph of $N(t)$
3. For any population (ignoring migration, harvesting, or predation) one can model the relative growth rate by the following conservation principle

$$
\frac{1}{N} \frac{d N}{d t}=\text { birth rate (per capita) - death rate (per capita) }=b-d
$$

where b and d could be functions of time and the population density N.
(a) Suppose that b and d are linear functions of N given by $b=b_{o}-\alpha N$ and $d=d_{o}+\beta N$ where b_{o}, d_{o}, α and β are positive constants. Assume that $b_{o}>d_{o}$. Sketch the graphs of b and d as functions of N. Give a possible interpretation for these graphs.
(b) Find the point where the two lines sketched in part (a) intersect. Let K denote the first coordinate of the point of intersection. Show that

$$
K=\frac{b_{o}-d_{o}}{\alpha+\beta}
$$

K is the carrying capacity of the population.
(c) Show that $\frac{d N}{d t}=r N\left(1-\frac{N}{K}\right)$ where $r=b_{o}-d_{o}$ is the intrinsic growth rate.
4. The following equation models the evolution of a population that is being harvested at a constant rate:

$$
\frac{d N}{d t}=2 N-0.01 N^{2}-75
$$

Find equilibrium solutions and sketch a few possible solution curves. According to model, what will happen if at time $t=0$ the initial population densities are $40,60,150$, or 170 ?
5. Consider the modified logistic model

$$
\frac{d N}{d t}=r N\left(1-\frac{N}{K}\right)\left(\frac{N}{T}-1\right)
$$

where $N(t)$ denotes the population density at time t, and $0<T<K$.
(a) Find the equilibrium solutions and determine the nature of their stability.
(b) Sketch other possible solutions to the equation.
(c) Describe what the model predicts about the population and give a possible explanation.

