Assignment #9

Due on Friday, November 2, 2007

Read Chapter 4 on *Modeling bacterial growth: the continuous approach*, p. 29, in the class lecture notes webpage at http://pages.pomona.edu/~ajr04747

Do the following problems

1. [The Principle of Linearized Stability]. Let \overline{N} be an equilibrium point of the equation

$$\frac{dN}{dt} = g(N),$$

where g is a differentiable function with continuous derivative g'(N). Show that if $g'(\overline{N}) < 0$, then \overline{N} is stable, and if $g'(\overline{N}) > 0$, the \overline{N} is unstable.

2. Give examples of the differential equation

$$\frac{dN}{dt} = g(N)$$

with an equilibrium point \overline{N} such that $g'(\overline{N}) = 0$, and for which

- (a) \overline{N} is stable, and
- (b) \overline{N} is unstable.
- 3. Show that the initial value problem (IVP)

$$\begin{cases} \frac{dN}{dt} = rN\left(1 - \frac{N}{K}\right)\\ N(0) = N_o, \end{cases}$$

where $0 < N_o < K$, has solution that is defined for all real values of t. Compute

$$\lim_{t \to -\infty} N(t) \quad \text{and} \quad \lim_{t \to +\infty} N(t).$$

Math 36. Rumbos

4. (Population "Super-Explosion"). If the per capita growth is assumed to be proportional to the population density, N (that is, if

$$\frac{1}{N} \frac{dN}{dt} = kN$$

for some constant or proportionality k > 0), we obtain the model

$$\frac{dN}{dt} = kN^2. \tag{1}$$

- (a) Use separation of variables to solve equation (1) subject to the initial condition N(0) = 1.
- (b) Show that the solution obtained in part (a) ceases to exist at some (finite) time t_1 . What is the value of t_1 ?
- (c) What happens to the solution as t tends to t_1 from the left?
- 5. The IVP

$$\begin{cases} \frac{dN}{dt} = \sqrt{N} \\ N(0) = 0, \end{cases}$$

has the constant function 0 as a solution. Use separation of variables to compute another solution to the IVP different from the 0-solution. Why doesn't this contradict the *Local Existence and Uniqueness Theorem*?