Exam 1

Name: \qquad

Show all significant work and justify all your answers. This is a closed book exam. Use your own paper and/or the paper provided by the instructor. You have 50 minutes to work on the following 3 problems. Relax.

1. Consider the difference equation

$$
\Delta N=a N
$$

where a is a nonzero parameter.
(a) Give an interpretation of the equation as a model for population growth.
(b) Solve the equation given that N_{o} is known.
(c) Find equilibrium point(s) and test for stability. Which values of a yield stability?
2. The difference equation

$$
\Delta N=r N(1-N)-E N
$$

provides a discrete model for a population that is growing logistically but is also being harvested at a rate proportional to the number of individuals present at a given time. The constant of proportionality E is called the harvesting effort. The parameters r and E are assumed to be positive.
(a) Write the model in the form $N_{t+1}=f\left(N_{t}\right)$ and give the fixed points of f.
(b) Find conditions on the parameters r and E that will ensure that the model will have a non-negative steady state. What does this say about the harvesting effort in terms of the intrinsic growth rate r ?
(c) Use the Principle of Linearized Stability to determine conditions on r and E that will guarantee that the nonzero equilibrium point found in the previous part is stable.
(d) What does the model predict if $E=r$?
3. Figure 1 shows the graph of $N_{t+1}=f\left(N_{t}\right)$, where $f(x)=x e^{r(1-x)}$ for $r=2.5$, as well as the graph of the line $N_{t+1}=N_{t}$.
(a) Give the two equilibrium points of the difference equation $N_{t+1}=f\left(N_{t}\right)$ and determine their stability properties using the cobweb diagram.
(b) Use the Principle of Linearized stability to verify your answers in the previous part.
(c) Describe the long-term behavior of solutions to the difference equation whose initial values, N_{o}, range from 0 to 2 .

Figure 1: Cobweb diagram for $f(x)=x e^{r(1-x)}$ with $r=2.5$

