Exam 1

October 17, 2007

Name: _____

Show all significant work and justify all your answers. This is a closed book exam. Use your own paper and/or the paper provided by the instructor. You have 50 minutes to work on the following 3 problems. Relax.

1. Consider the difference equation

$$\Delta N = aN,$$

where a is a nonzero parameter.

- (a) Give an interpretation of the equation as a model for population growth.
- (b) Solve the equation given that N_o is known.
- (c) Find equilibrium point(s) and test for stability. Which values of a yield stability?
- 2. The difference equation

$$\Delta N = rN(1-N) - EN$$

provides a discrete model for a population that is growing logistically but is also being harvested at a rate proportional to the number of individuals present at a given time. The constant of proportionality E is called the *harvesting effort*. The parameters r and E are assumed to be positive.

- (a) Write the model in the form $N_{t+1} = f(N_t)$ and give the fixed points of f.
- (b) Find conditions on the parameters r and E that will ensure that the model will have a non-negative steady state. What does this say about the harvesting effort in terms of the intrinsic growth rate r?
- (c) Use the Principle of Linearized Stability to determine conditions on r and E that will guarantee that the nonzero equilibrium point found in the previous part is stable.
- (d) What does the model predict if E = r?

- 3. Figure 1 shows the graph of $N_{t+1} = f(N_t)$, where $f(x) = xe^{r(1-x)}$ for r = 2.5, as well as the graph of the line $N_{t+1} = N_t$.
 - (a) Give the two equilibrium points of the difference equation $N_{t+1} = f(N_t)$ and determine their stability properties using the cobweb diagram.
 - (b) Use the Principle of Linearized stability to verify your answers in the previous part.
 - (c) Describe the long-term behavior of solutions to the difference equation whose initial values, N_o , range from 0 to 2.

Figure 1: Cobweb diagram for $f(x) = xe^{r(1-x)}$ with r = 2.5