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Solutions to Review Problems for Exam 2

1. A patient is given the drug theophylline intravenously at a constant rate of 43.2
mg/hour to relieve acute asthma. You can imagine the drug as entering a compartment
of volume 35, 000 ml. (This is an estimate of the volume of the part of the body
through which the drug circulates.) The rate at which the drug leaves the patient is
proportional to the quantity there, with proportionality constant 0.082.

(a) Write a differential equation for the quantity, Q = Q(t), in milligrams, of the
drug in the body at time t hours.

Solution: Use the conservation principle for a one–compartment model
to get

dQ

dt
= Rate of Q in− Rate of Q out
= 43.2− 0.082Q.

Thus,
dQ

dt
= −k(Q−Q),

where k = 0.082 and Q =
43.2
0.082

=̇ 526.83. �

(b) Give the equilibrium solution, Q, to the equation in part (a).

Answer: Q =
43.2
0.082

=̇ 526.83. �

(c) Assuming that the patient’s body contains none of the drug initially, give Q(t)
for all t, and sketch an approximate graph of Q as a function of t.

t
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Q

Figure 1: Sketch of graph of Q(t)

Solution: Use separation of variables to get

Q(t) = Q + ce−kt,

for some constant c. Since Q(0) = 0, we get that

Q(t) = Q(1− e−kt).
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�

(d) What is the limiting value of Q(t) as t →∞?

Solution:
lim
t→∞

Q(t) = lim
t→∞

Q(1− e−kt) = Q.

�

2. [Harvesting] The following differential equation models the growth of a population of
size N = N(t) that is being harvested at a rate proportional to the population density

dN

dt
= rN

(
1− N

K

)
− EN, (1)

where r, K and E are parameters and non–negative parameters with r > 0 and K > 0.

(a) Give an interpretation for this model. In particular, give interpretation for the
term EN . The parameter E is usually called the harvesting effort.

Answer: This equation models a population that grows logistically and
that is also being harvested at a rate proportional to the populations
density. �

(b) Calculate the equilibrium points for the equation (1), and give conditions on the
parameters that yield a biologically meaningful equilibrium point. Determine
the nature of the stability of that equilibrium point. Sketch possible solutions to
the equation in this situation.

Solution: Write

g(N) = rN

(
1− N

K

)
− EN

= rN

(
1− N

K
− E

r

)

= − r

K
N

[
N −K

(
1− E

r

)]
.

We then see that equilibrium points of equation (1) are

N∗
1 = 0 and N∗

2 = K

(
1− E

r

)
.

The second equilibrium point is biologically meaningful if N∗
2 > 0, and

for this to happen we require that E < r; that is, the harvesting effort
is less than the intrinsic growth rate.
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Figure 2: Graph of g(N)
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Figure 3: Possible Solutions

To determine the nature of the stability of N∗
2 for the case E < r, con-

sider the graph of g in Figure 2. Observe from the graph that g′(N∗
2 ) < 0.

It then follows from the principle of linearized stability that N∗
2 is asymp-

totically stable.
The solid curves in Figure 3 show some possible solutions of the equation
�

(c) What does the model predict if E > r?

Solution: If E = r, then

dN

dt
= − r

K
N2 < 0

for N > 0. It then follows that N(t) will always be strictly decreas-
ing and so the population will go extinct. In fact, using separation of
variables, we obtain that the solution for N(0) = No is given by

N(t) =
NoK

K + Nort
,

which tends to 0 as t →∞.
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On the other hand, if E > r, then

dN

dt
= − r

K
N

[
N −K

(
1− E

r

)]

= − r

K
N2 + KN(r − E)

< − r

K
N2 < 0,

and so again we conclude the N(t) will be always decreasing to 0. �

3. [Harvesting, continued] Suppose that 0 < E < r in equation (1), and let N denote
the positive equilibrium point. The quantity Y = EN is called the harvesting yield.

(a) Find the value of E for which the harvesting yield is the largest possible; this
value of the yield is called the maximum sustainable yield.

Solution: N is N∗
2 in the previous problem. Consequently, the yield is

given by

Y (E) = EN∗
2 = EK

(
1− E

r

)
= EK − K

r
E2.

Taking derivatives with respect to E, we obtain that

Y ′(E) = K − 2K

r
E and Y ′′(E) = −2K

r
< 0.

Thus, by the second derivative test, Y (E) has a maximum when E =
r

2
.

�

(b) What is the value of the equilibrium point for which there is the maximum
sustainable yield?

Solution: The maximum value of Y is

Y (r/2) =
r

2
K

(
1− r/2

r

)
=

rK

4
.

�

4. We have seen that the (continuous) logistic model

dN

dt
= rN

(
1− N

K

)
,

where r and K are positive parameters, has an equilibrium point at N = K.
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(a) Let g(N) = rN

(
1− N

K

)
and give the linear approximation to g(N) for N close

to K:
g(K) + g′(K)(N −K).

Observe that g(K) = 0 since K is an equilibrium point.

Solution: Compute the derivative g′(N) to get

g′(N) = r − 2r

K
N.

Then,

g′(K) = r − 2r

K
K = −r

and therefore the linear approximation to g(N) for N near K is

−r(N −K).

�

(b) Let u = N −K and consider the linear differential equation

du

dt
= g′(K)u.

This is called the linearization of the equation

dN

dt
= g(N)

around the equilibrium point N = K. Use separation of variables to solve the
linearized equation. What happens to |u(t)| as t → ∞, where u is any solution
to the linearized equation?

Solution: Solve the equation

du

dt
= −ru

to obtain that
u(t) = ce−rt

for some constant c. Then,

|u(t)| = |c|e−rt

and therefore
lim
t→∞

|u(t)| = 0.

�
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(c) Use your result in the previous part to give an explanation as to why any solution
to the logistic equation that begins very close to K can be approximation by

K + u(t),

where u is a solution to the linearized equation.

Solution: Let N(t) denote a solution to the logistic equation with
N(0) = No and No very close to K. Then |u(0)| = |No − K| is very
small and consequently,

|u(t)| = |No −K|e−rt < |No −K| for all t > 0.

Thus, |u(t)| if very small for all t > 0 and therefore the function g(N(t))
is very close to its linear approximation

−r(N −K) = −ru.

Consequently, a solution of
dN

dt
= g(N) can be approximated by a

solution of
dN

dt
= −r(N −K),

or
du

dt
= −ru.

Thus, N(t)−K can be approximated by u(t) for all t > 0, and therefore

N(t) ≈ K + u(t).

�

(d) Suppose that N = N(t) is a solution to the logistic equation that starts at No,
where No is very close to K. Find an estimate of the time it takes for the distance
|N(t)−K| to decrease by a factor of e. This time is called the recovery time.

Solution: Since
N(t) ≈ K + u(t),

N(t) ≈ K + (No −K)e−rt.

for all t > 0. So,
|N(t)−K| ≈ |No −K|e−rt

for all t > 0.
We want to know the time t for which

|N(t)−K| = |No −K|
e

.
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This is approximated by the time t for which

|No −K|e−rt =
|No −K|

e

or
e−rt = e−1

This yields that rt = 1, or t = 1/r. �

5. Imagine a culture grown from a single bacterium. Suppose that there have been n
division cycles. Assume that no bacterium has died during those cycles.

(a) How large is the culture? How many divisions have there been? Assume that all
divisions that occur during the same cycle happen at the same time (these are
usually referred to as synchronous divisions).

Solution: If the number of division cycles is n, then the total bacterial
population is N = 2n at the end of the n division cycles. During that
period of time, there have been

1 + 2 + 22 + · · ·+ 2n−1

divisions since each bacterium in previous generations has divided. If
we denote the number of divisions by D, then we see that

2D = 2 + 22 + · · ·+ 2n−1 + 2n = D + 2n − 1.

It then follows that D = 2n− 1, and so the number of divisions is 2n− 1
or N − 1. �

(b) Recall that the mutation rate, a, gives the probability that a given bacterium will
mutate during a division. Let N denote the total bacterial population in a culture
grown out of a single bacterium in n division cycles. Show that the probability,
po, of no mutants present after the n division cycles can be approximated by e−µ,
where µ = aN and N is very large.
Suggestion: If D is the number of divisions that have occurred in n division
cycles, what is the probability that no mutation has occurred in any of those
divisions? What happens to this probability as N tends to infinity?

Solution: The probability that there are no mutants at the end of the
nth division cycle, is the probability that there have been no mutations
in the N−1 divisions that have occurred. The probability of no mutation
in one division is 1− a. It then follows that

po = (1− a)N−1.
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Writing a as
µ

N
we then have that

po =
(
1− µ

N

)−1 (
1− µ

N

)N
.

Thus, for N very large,

po ≈ lim
N→∞

{(
1− µ

N

)−1 (
1− µ

N

)N
}

= e−µ.

�

(c) There will be exactly one mutant in the culture after n division cycles if no
mutation occurs in the first n− 2 cycles, and exactly one mutation occurs in the
(n− 1)st cycle.

i. Explain why the probability of one mutation in the (n−1)st cycle is a ·2n−1.
Solution: Since a is the probability of a mutation in a bacterium
per division, then the fraction of bacteria that can mutate in the
(n− 1)st division cycle is

a · (number of bacteria)(number of divisions)
number of bacteria

= a · 2n−1,

since each bacterium divides. �

ii. Estimate the probability, p1, that there will be exactly one mutant in the
culture after n division cycles, if the culture size, N , is very large.
Suggestion: If D is the number of divisions that have occurred in n division
cycles, what is the probability that no mutation has occurred in D − 1 of
those divisions, and exactly one mutation occurs in one division? What
happens to this probability as N tends to infinity?

Solution: There will be exactly one mutant if there is exactly one
mutation in the D divisions and that mutation occurred in the (n−
1)st division cycle.

p1 = P [only one mutation occurred]·P [mutation occurred at (n−1)st cycle]

By part (a), P [one mutation at (n− 1)st cycle] = a · 2n−1.

If D denotes the number of divisions in n cycles, then D = N − 1,
where N = 2n. Thus the probability that exactly one mutation
occurred is the probability that no mutation occurs in N−2 of those
divisions. Thus,

P [only one mutation occurred] = (1− a)N−2.
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It then follows that

p1 = (1− a)N−2 · a · 2n−1 =
aN

2
(1− a)N−2.

Writing µ for aN we then have p1 =
µ

2

(
1− µ

N

)N−2
. Therefore,

letting N →∞, we get that

p1 ≈
µ

2
e−µ.

�

(d) If the number of mutants, r, in the culture is equal to 2, two bacteria might have
mutated during the n − 1 division cycle, or one bacterium might have mutated
during the n − 2 cycle giving rise to 2 mutants after cell division in the n − 1
cycle. Estimate the probability, p2, of this event for N very large.

Solution: p2 is the sum of the probability that two mutations occurred
in the (n−1)–cycle, and the probability that only one mutation occurred
in the (n− 2)–cycle.
Let D = N − 1 denote the total number of divisions.
The probability that only one mutation occurred in the (n− 2)–cycle is
probability that no mutation occurred in all but three of the divisions
(the ones that will stem from the single bacterium that mutates in that
cycle), times the probability that a mutation will occur in that cycle.

The former is (1−a)N−4 and the latter is 2n−2a, or
N

4
a. It then follows

that

P [only one mutation occurred in (n− 2)–cycle] = (1− a)N−4 · aN

4
.

The probability that only two mutations occurred in the (n − 1)–cycle
is the probability that no mutations occur in all but two of the divi-
sions, times the probability that two mutations occur during that cy-
cle. The former is (1 − a)N−3 and the latter is a2n−1 · a(2n−1 − 1), or

a2 · N

2

(
N

2
− 1

)
. Thus,

P [two mutations occurred in (n−1)–cycle] = (1−a)N−3a2·N
2

(
N

2
− 1

)
.

We then have that

p2 = (1− a)N−4 · aN

4
+ (1− a)N−3a2 · N

2

(
N

2
− 1

)

= (1− a)N−4 · aN

4
+ (1− a)N−3 (aN)2

4

(
1− 2

N

)
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Substituting µ for aN we then get that

p2 =
(
1− µ

N

)N−4
· µ

4
+

(
1− µ

N

)N−3 µ2

4

(
1− 2

N

)
.

Letting N →∞, we then get that

p2 ≈
µ

4
e−µ +

µ2

4
e−µ =

1
4
µ(1 + µ)e−µ.

�

(e) Use your results in the previous three parts to estimate the probability that there
will be 3 or more resistant bacteria in the culture after n division cycles when
the population size, N , is very large.

Solution: P [r ≥ 3] = 1 − (P [r = 0] + P [r = 1] + P [r = 2]. Thus, by
parts (2)–(4),

P [r ≥ 3] = 1− po − p1 − p2 ≈ 1− e−µ − µ

2
e−µ − 1

4
µ(1 + µ)e−µ.

This can be rewritten as

P [r ≥ 3] ≈ 1− e−µ

(
1 +

3
4
µ +

1
4
µ2

)
.

�

6. Suppose we are interested in tracking the proportions of the genotypes GG, Gg and
gg in a very large population, and that, initially, those proportions are po, qo and ro,
respectively.

(a) Let a denote the proportion of allele G in the entire population and b be that of
allele g. Find a and b in terms of po, qo and ro.

Solution: An individual in a population will have the allele G if its
genotype is GG or Gg; in the first case there are two instances of the
allele, while in the second there is only one. It then follows that

a =
2× [proportion of genotype GG] + 1× [proportion of genotype Gg]

2
,

where we have divided by 2 since each individual has 2 alleles. Thus,

a = po +
1
2
qo.

Similarly,

b =
1
2
qo + ro.

�
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(b) Assuming random mating between individuals of the various genotypes, compute
the proportions p1, q1 and r1 of the genotypes GG, Gg and gg, respectively, in
the first generation.

Solution: We need to consider all the possible nine crossings:

GG×GG GG×Gg GG× gg
Gg ×GG Gg ×Gg Gg × gg
gg ×GG gg ×Gg gg × gg

Assume that these crossings are all equally likely. Out of the nine cross-
ings, only

GG×GG, Gg ×Gg, GG×Gg, and Gg ×GG

produce the genotype GG: the first one with probability 1, the second
with probability 1/4, and the last two with probability 1/2. It then
follows that

p1 = 1× [probability of GG×GG]

+
1
4
× [probability of Gg ×Gg]

+
1
2
× [probability of GG×Gg] +

1
2
× [probability of Gg ×GG]

= p2
o +

1
4
q2
o + poqo.

Similarly, since the crossings

GG×Gg, GG× gg, Gg ×GG, Gg ×Gg, Gg × gg, gg ×GG, gg ×Gg

produce the phenotype Gg with probabilities 1/2, 1, 1/2, 1/2, 1/2, 1
and 1/2, respectively, we have that

q1 =
1
2
poqo + poro +

1
2
qopo +

1
2
q2
o +

1
2
qoro + ropo +

1
2
roqo

= poqo + qoro + 2poro +
1
2
q2
o .

By the same token, since the crossings

Gg ×Gg, Gg × gg, gg ×Gg, gg × gg

produce the phenotype gg with probabilities 1/4, 1/2, 1/2 and 1, re-
spectively,

r1 =
1
4
q2
o +

1
2
qoro +

1
2
roqo + r2

o =
1
4
q2
o + qoro + r2

o .

�
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(c) Verify that p1, q1 and r1 are given by a2, 2ab and b2, respectively, where a and
b are as in part (a).

Solution: Compute

a2 =
(

po +
1
2
qo

)2

= p2
o + poqo +

1
4
q2
o = p1,

2ab = 2
(

po +
1
2
qo

) (
1
2
qo + ro

)

= 2
(

1
2
poqo + poro +

1
4
q2
o +

1
2
qoro

)

= poqo + 2poro +
1
2
q2
o + qoro

= q1,

and

b2 =
(

1
2
qo + ro

)2

=
1
4
q2
o + qoro + r2

o = r1.

�


