Assignment #10

Due on Friday, October 10, 2008

Read Section 7.4 on *The Derivative*, pp. 187–197, in Bressoud.

Read Section 7.3 on *Directional Derivatives*, pp. 181–187, in Bressoud.

Background and Definitions

Let $f: U \to \mathbb{R}$ denote a scalar field defined on an open subset U of \mathbb{R}^n , and let \hat{u} be a unit vector in \mathbb{R}^n . If the limit

$$\lim_{t \to 0} \frac{f(x + t\widehat{u}) - f(x)}{t}$$

exists, we call it the directional derivative of f at x in the direction of the unit vector \hat{u} . We denote it by $D_{\hat{u}}f(x)$.

If f is differentiable at $x \in U$, then

$$D_{\widehat{u}}f(x) = \nabla f(x) \cdot \widehat{u},$$

where $\nabla f(x)$ is the gradient of f at x.

Do the following problems

1. Let v denote a vector in \mathbb{R}^n and suppose that $v \cdot \hat{u} = 0$ for every unit vector \hat{u} in \mathbb{R}^n . Prove that v must be the zero vector.

Suppose that $f: U \to \mathbb{R}$ is differentiable at $x \in U$. Prove that if $D_{\hat{u}}f(x) = 0$ for every unit vector \hat{u} in \mathbb{R}^n , then $\nabla f(x)$ must be the zero vector.

2. The scalar field $f: U \to \mathbb{R}$ is said to have a *local minimum* at $x \in U$ if there exists r > 0 such that $B_r(x) \subseteq U$ and

$$f(x) \leq f(y)$$
 for every $y \in B_r(x)$.

Prove that if f is differentiable at $x \in U$ and f has a local minimum at x, then $\nabla f(x) = \mathbf{0}$, the zero vector in \mathbb{R}^n .

(Suggestion: Note that for |t| < r and any unit vector \hat{u} in \mathbb{R}^n ,

$$f(x) \leqslant f(x + t\widehat{u}).$$

It then follows that

$$f(x+t\widehat{u}) - f(x) \ge 0.$$

Divide by $t \neq 0$ and then let $t \rightarrow 0$. Consider the two cases t > 0 and t < 0 separately.)

Math 107. Rumbos

- 3. Suppose that $f: U \to \mathbb{R}$ is differentiable at $x \in U$. Use the Cauchy–Schwarz inequality to show that the largest value of $D_{\hat{u}}f(x)$ is $\|\nabla f(x)\|$ and it occurs when \hat{u} is in the direction of $\nabla f(x)$.
- 4. Let U denote an open and convex subset of \mathbb{R}^n . Suppose that $f: U \to \mathbb{R}$ is differentiable at every $x \in U$. Fix x and y in U, and define $g: [0, 1] \to \mathbb{R}$ by

$$g(t) = f(x + t(y - x)) \quad \text{for} \ \ 0 \le t \le 1.$$

- (a) Explain why the function g is well defined.
- (b) Show that g is differentiable on (0, 1) and that

$$g'(t) = \nabla f(x + t(y - x)) \cdot (y - x)$$
 for $0 < t < 1$.

(Suggestion: Consider

$$\frac{g(t+h) - g(t)}{h} = \frac{f(x + t(y-x) + h(y-x)) - f(x + t(y-x))}{h}$$

and apply the definition of differentiability of f at the point x + t(y - x).)

(c) Use the Mean Value Theorem for derivatives to show that there exists a point z is the line segment connecting x to y such that

$$f(y) - f(x) = D_{\widehat{u}}f(z) ||y - x||,$$

where \hat{u} is the unit vector in the direction of the vector y - x; that is, $\hat{u} = \frac{1}{\|y - x\|}(y - x).$ (*Hint:* Observe that g(1) - g(0) = f(y) - f(x).)

- (d) Deduce that if U is an open and convex subset of \mathbb{R}^n , and $f: U \to \mathbb{R}$ is differentiable on U with $\nabla f(x) = \mathbf{0}$ for all $x \in U$, then f must be a constant function.
- 5. Exercise 13 on page 198 in the text.