Assignment \#10

Due on Friday, October 10, 2008
Read Section 7.4 on The Derivative, pp. 187-197, in Bressoud.
Read Section 7.3 on Directional Derivatives, pp. 181-187, in Bressoud.

Background and Definitions

Let $f: U \rightarrow \mathbb{R}$ denote a scalar field defined on an open subset U of \mathbb{R}^{n}, and let \widehat{u} be a unit vector in \mathbb{R}^{n}. If the limit

$$
\lim _{t \rightarrow 0} \frac{f(x+t \widehat{u})-f(x)}{t}
$$

exists, we call it the directional derivative of f at x in the direction of the unit vector \widehat{u}. We denote it by $D_{\widehat{u}} f(x)$.
If f is differentiable at $x \in U$, then

$$
D_{\widehat{u}} f(x)=\nabla f(x) \cdot \widehat{u},
$$

where $\nabla f(x)$ is the gradient of f at x.
Do the following problems

1. Let v denote a vector in \mathbb{R}^{n} and suppose that $v \cdot \widehat{u}=0$ for every unit vector \widehat{u} in \mathbb{R}^{n}. Prove that v must be the zero vector.

Suppose that $f: U \rightarrow \mathbb{R}$ is differentiable at $x \in U$. Prove that if $D_{\widehat{u}} f(x)=0$ for every unit vector \widehat{u} in \mathbb{R}^{n}, then $\nabla f(x)$ must be the zero vector.
2. The scalar field $f: U \rightarrow \mathbb{R}$ is said to have a local minimum at $x \in U$ if there exists $r>0$ such that $B_{r}(x) \subseteq U$ and

$$
f(x) \leqslant f(y) \quad \text { for every } y \in B_{r}(x)
$$

Prove that if f is differentiable at $x \in U$ and f has a local minimum at x, then $\nabla f(x)=\mathbf{0}$, the zero vector in \mathbb{R}^{n}.
(Suggestion: Note that for $|t|<r$ and any unit vector \widehat{u} in \mathbb{R}^{n},

$$
f(x) \leqslant f(x+t \widehat{u})
$$

It then follows that

$$
f(x+t \widehat{u})-f(x) \geqslant 0
$$

Divide by $t \neq 0$ and then let $t \rightarrow 0$. Consider the two cases $t>0$ and $t<0$ separately.)
3. Suppose that $f: U \rightarrow \mathbb{R}$ is differentiable at $x \in U$. Use the Cauchy-Schwarz inequality to show that the largest value of $D_{\widehat{u}} f(x)$ is $\|\nabla f(x)\|$ and it occurs when \widehat{u} is in the direction of $\nabla f(x)$.
4. Let U denote an open and convex subset of \mathbb{R}^{n}. Suppose that $f: U \rightarrow \mathbb{R}$ is differentiable at every $x \in U$. Fix x and y in U, and define $g:[0,1] \rightarrow \mathbb{R}$ by

$$
g(t)=f(x+t(y-x)) \text { for } 0 \leqslant t \leqslant 1
$$

(a) Explain why the function g is well defined.
(b) Show that g is differentiable on $(0,1)$ and that

$$
g^{\prime}(t)=\nabla f(x+t(y-x)) \cdot(y-x) \quad \text { for } 0<t<1
$$

(Suggestion: Consider

$$
\frac{g(t+h)-g(t)}{h}=\frac{f(x+t(y-x)+h(y-x))-f(x+t(y-x))}{h}
$$

and apply the definition of differentiability of f at the point $x+t(y-x)$.)
(c) Use the Mean Value Theorem for derivatives to show that there exists a point z is the line segment connecting x to y such that

$$
f(y)-f(x)=D_{\widehat{u}} f(z)\|y-x\|,
$$

where \widehat{u} is the unit vector in the direction of the vector $y-x$; that is, $\widehat{u}=\frac{1}{\|y-x\|}(y-x)$.
(Hint: Observe that $g(1)-g(0)=f(y)-f(x)$.)
(d) Deduce that if U is an open and convex subset of \mathbb{R}^{n}, and $f: U \rightarrow \mathbb{R}$ is differentiable on U with $\nabla f(x)=\mathbf{0}$ for all $x \in U$, then f must be a constant function.
5. Exercise 13 on page 198 in the text.

