Assignment \#11
 Due on Monday, October 13, 2008

Read Section 7.4 on The Derivative, pp. 187-197, in Bressoud.
Read Section 3.1 on The Calculus of Curves, pp. 53-65, in Bressoud.

Background and Definitions

Let I denote an open interval of real numbers, and let $\sigma: I \rightarrow \mathbb{R}^{n}$ be a path in \mathbb{R}^{n}. If σ is differentiable at $t \in I$, then

$$
\sigma(t+h)=\sigma(t)+h \mathbf{v}(t)+E_{t}(h), \text { where } \lim _{h \rightarrow 0} \frac{\left\|E_{t}(h)\right\|}{|h|}=0 .
$$

If σ is differentiable at every $t \in I$, the vector valued function $\mathbf{v}(t)$ is called the velocity of the path and is denoted by $\sigma^{\prime}(t)$ for all $t \in I$.
Do the following problems

1. Let I denote an open interval in \mathbb{R}. Suppose that $\sigma: I \rightarrow \mathbb{R}^{n}$ and $\gamma: I \rightarrow \mathbb{R}^{n}$ are paths in \mathbb{R}^{n}. Define a real valued function $f: I \rightarrow \mathbb{R}$ of a single variable by

$$
f(t)=\sigma(t) \cdot \gamma(t) \quad \text { for all } t \in I
$$

that is, $f(t)$ is the dot product of the two paths at t.
Show that if σ and γ are both differentiable on I, then so is f, and

$$
f^{\prime}(t)=\sigma^{\prime}(t) \cdot \gamma(t)+\sigma(t) \cdot \gamma^{\prime}(t) \quad \text { for all } t \in I
$$

2. Let $\sigma: I \rightarrow \mathbb{R}^{n}$ denote a differentiable path in \mathbb{R}^{n}. Show that if $\|\sigma(t)\|$ is constant for all $t \in I$, then $\sigma^{\prime}(t)$ is orthogonal to $\sigma(t)$ for all $t \in I$.
3. Exercise 14 on page 66 in the text.
4. A particle is following a path in three-dimensional space given by

$$
\sigma(t)=\left(e^{t}, e^{-t}, 1-t\right) \quad \text { for } \quad t \in \mathbb{R} .
$$

At time $t_{o}=1$, the particle flies off on a tangent.
(a) Where will the particle be at time $t_{1}=2$?
(b) Will the particle ever hit the $x y$-plane? Is so, find the location on the $x y$ plane where the particle hits.
5. Suppose the velocity, $\sigma^{\prime}(t)$, of a path $\sigma: I \rightarrow \mathbb{R}^{n}$ is itself differentiable. We denote its derivative by $\sigma^{\prime \prime}(t)$ and say that σ is twice-differentiable. What can you say about a twice-differentiable path, σ, for which $\sigma^{\prime \prime}(t)$ is the zero vector in \mathbb{R}^{n} for all $t \in I$?

