Assignment \#13

Due on Wednesday, October 29, 2008
Read Section 7.4 on The Derivative, pp. 187-197, in Bressoud.
Read Section 7.6 on The Chain Rule, pp. 201-205, in Bressoud.
Do the following problems

1. Let D denote an open region in \mathbb{R}^{2} and $f: D \rightarrow \mathbb{R}$ be a C^{2} scalar field on D. The Jacobian of the gradient map $\nabla f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is called the Hessian of the function f and is denoted by H_{f}; that is

$$
H_{f}(x, y)=J_{\nabla f}(x, y)
$$

Compute the Hessian for the following scalar fields in \mathbb{R}^{2}.
(a) $f(x, y)=x^{2}-y^{2}$ for all $(x, y) \in \mathbb{R}^{2}$.
(b) $f(x, y)=x y$ for all $(x, y) \in \mathbb{R}^{2}$.
2. Let A denote a symmetric $n \times n$ matrix; recall that this means that $A^{T}=A$, where A^{T} denotes the transpose of A. Define $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ by $f(x)=\frac{1}{2}(A x) \cdot x$ for all $x \in \mathbb{R}^{n}$; that is, $f(x)$ is the dot-product of $A x$ and x. In terms of matrix product,

$$
f(x)=\frac{1}{2}(A x)^{T} x \quad \text { for all } x \in \mathbb{R}^{n}
$$

where x is expressed as a column vector.
(a) Show that f is differentiable and compute the gradient map ∇f.
(b) Show that the gradient map ∇f is differentiable, and compute its derivative.
3. Let U be an open subset of \mathbb{R}^{n} and I be an open interval. Suppose that $f: U \rightarrow$ \mathbb{R} is a differentiable scalar field and $\sigma: I \rightarrow \mathbb{R}^{n}$ be a differentiable path whose image lies in U. Suppose also that $\sigma^{\prime}(t)$ is never the zero vector. Show that if f has a local maximum or a local minimum at some point on the path, then ∇f is perpendicular to the path at that point.

Suggestion: Consider the real valued function of a single variable $g(t)=f(\sigma(t))$ for all $t \in I$.
4. Let $\sigma:[a, b] \rightarrow \mathbb{R}^{n}$ be a differentiable, one-to-one path. Suppose also that $\sigma^{\prime}(t)$, is never the zero vector. Let $h:[c, d] \rightarrow[a, b]$ be a one-to-one and onto map such that $h^{\prime}(t) \neq 0$ for all $t \in[c, d]$. Define

$$
\gamma(t)=\sigma(h(t)) \quad \text { for all } t \in[c, d] .
$$

$\gamma:[c, d] \rightarrow \mathbb{R}^{n}$ is a called a reparametrization of σ
(a) Show that γ is a differentiable, one-to-one path.
(b) Compute $\gamma^{\prime}(t)$ and show that it is never the zero vector.
(c) Show that σ and γ have the same image in \mathbb{R}^{n}.
5. Exercise 8 on page 208 in the text.

