Assignment #13

Due on Wednesday, October 29, 2008

Read Section 7.4 on The Derivative, pp. 187–197, in Bressoud.

Read Section 7.6 on *The Chain Rule*, pp. 201–205, in Bressoud.

Do the following problems

1. Let D denote an open region in \mathbb{R}^2 and $f: D \to \mathbb{R}$ be a C^2 scalar field on D. The Jacobian of the gradient map $\nabla f: \mathbb{R}^2 \to \mathbb{R}^2$ is called the *Hessian* of the function f and is denoted by H_f ; that is

$$H_f(x,y) = J_{\nabla f}(x,y).$$

Compute the Hessian for the following scalar fields in \mathbb{R}^2 .

- (a) $f(x,y) = x^2 y^2$ for all $(x,y) \in \mathbb{R}^2$.
- (b) f(x,y) = xy for all $(x,y) \in \mathbb{R}^2$.
- 2. Let A denote a symmetric $n \times n$ matrix; recall that this means that $A^T = A$, where A^T denotes the transpose of A. Define $f \colon \mathbb{R}^n \to \mathbb{R}$ by $f(x) = \frac{1}{2}(Ax) \cdot x$ for all $x \in \mathbb{R}^n$; that is, f(x) is the dot-product of Ax and x. In terms of matrix product,

$$f(x) = \frac{1}{2} (Ax)^T x$$
 for all $x \in \mathbb{R}^n$,

where x is expressed as a column vector.

- (a) Show that f is differentiable and compute the gradient map ∇f .
- (b) Show that the gradient map ∇f is differentiable, and compute its derivative.
- 3. Let U be an open subset of \mathbb{R}^n and I be an open interval. Suppose that $f: U \to \mathbb{R}$ is a differentiable scalar field and $\sigma: I \to \mathbb{R}^n$ be a differentiable path whose image lies in U. Suppose also that $\sigma'(t)$ is never the zero vector. Show that if f has a local maximum or a local minimum at some point on the path, then ∇f is perpendicular to the path at that point.

Suggestion: Consider the real valued function of a single variable $g(t) = f(\sigma(t))$ for all $t \in I$.

Math 107. Rumbos

4. Let $\sigma: [a, b] \to \mathbb{R}^n$ be a differentiable, one-to-one path. Suppose also that $\sigma'(t)$, is never the zero vector. Let $h: [c, d] \to [a, b]$ be a one-to-one and onto map such that $h'(t) \neq 0$ for all $t \in [c, d]$. Define

$$\gamma(t) = \sigma(h(t))$$
 for all $t \in [c, d]$.

 $\gamma\colon [c,d]\to \mathbb{R}^n$ is a called a reparametrization of σ

- (a) Show that γ is a differentiable, one-to-one path.
- (b) Compute $\gamma'(t)$ and show that it is never the zero vector.
- (c) Show that σ and γ have the same image in \mathbb{R}^n .
- 5. Exercise 8 on page 208 in the text.