Assignment \#18

Due on Wednesday, November 12, 2008

Read Section 5.2 on Line Integrals, pp. 113-119, in Bressoud.

Background and Definitions

Consider a 2-dimensional vector field

$$
F(x, y)=P(x, y) \widehat{i}+Q(x, y) \widehat{j}
$$

If F represents a force field in two dimensions, then the line integral

$$
\int_{C} F \cdot \mathbf{T} \mathrm{~d} s=\int_{C} P \mathrm{~d} x+Q \mathrm{~d} y
$$

where C is the image of a C^{1} path $\sigma:[a, b] \rightarrow \mathbb{R}^{2}$ which parametrizes C, represents the work done by the field in moving a particle from from $\sigma(a)$ to $\sigma(b)$ along the curve C.

If F is a two-dimensional flow field (in units of mass per unit time per unit length) and C is a C^{1}, simple, closed curve, then the flux of F across C,

$$
\oint_{C} F \cdot \widehat{n} \mathrm{~d} s=\oint_{C} P \mathrm{~d} y-Q \mathrm{~d} x
$$

gives the amount of fluid that leaves the inside of the curve C in one unit of time.
Do the following problems

1. A force field, F, is given by

$$
F(x, y)=(2 x+y) \widehat{i}+x \widehat{j}
$$

(a) Find the amount of work done by the field in moving the particle from $(1,-2)$ to $(2,1)$ along a straight line segment.
(b) Show that the work done by the field in moving the particle from $(1,-2)$ to $(2,1)$ is independent from the path you follow to get from $(1,-2)$ to $(2,1)$.
2. A flow field, F, is given by

$$
F(x, y)=3 y^{2} \widehat{i}-2 x \widehat{j}
$$

Find the rate at which fluid crosses the boundary of the region in the $x y$-plane bounded by the curve $y=1-x^{2}$ and the line from $(-1,0)$ to $(2,-3)$.
3. Let F denote the flow field in the previous problem. Compute the flux of the field across the boundary of the triangle with vertices $(-1,0),(1,0)$ and $(2,-3)$.
4. Let C be a curve parametrized by a C^{1} path $\sigma:[a, b] \rightarrow \mathbb{R}^{n}$. Assume that F is perpendicular to $\sigma^{\prime}(t)$ at $\sigma(t)$ for all $t \in[a, b]$. Compute the line integral of F on C.
5. Let C be a curve parametrized by a C^{1} path $\sigma:[a, b] \rightarrow \mathbb{R}^{n}$. Assume that F is parallel to $\sigma^{\prime}(t)$ at $\sigma(t)$ for all $t \in[a, b]$. Compute the line integral of F on C. Note: F is parallel to $\sigma^{\prime}(t)$ at $\sigma(t)$ means that

$$
F(\sigma(t))=\lambda(t) \sigma^{\prime}(t)
$$

where the scalar $\lambda(t)$ is positive.

