Assignment \#22

Due on Monday, November 24, 2008
Read on The Fundamental Theorem of Calculus, pp. 279-320 in Chapter 10 of Bressoud's book.

Background and Definitions

Recall that the Fundamental Theorem of Calculus,

$$
\int_{M} \mathrm{~d} \omega=\int_{\partial M} \omega
$$

takes the following two forms in two-dimensional Euclidean space:
Let R denote a region in \mathbb{R}^{2} bounded by a simple closed curve, $\partial \mathbb{R}$, made up of a finite number of C^{1} paths traversed in the counterclockwise sense. Let P and Q denote two C^{1} scalar fields defined on some open set containing R and its boundary, ∂R.

Theorem 0.1 (Green's Theorem). Then,

$$
\begin{equation*}
\int_{R}\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) d x d y=\int_{\partial R} P d x+Q d y \tag{1}
\end{equation*}
$$

and, if $F=P \widehat{i}+Q \widehat{j}$,
Theorem 0.2 (The Divergence Theorem). Then,

$$
\begin{equation*}
\int_{R} \operatorname{div} F d x d y=\oint_{\partial R} F \cdot \widehat{n} d s \tag{2}
\end{equation*}
$$

where \widehat{n} is the outward unit normal to $\partial \mathbb{R}$.

Do the following problems

1. Use the Fundamental Theorem of Calculus in two dimensions to evaluate the line integral

$$
\oint_{C}\left(y^{2}+x^{3}\right) \mathrm{d} x+x^{4} \mathrm{~d} y
$$

where C is the boundary of the unit square in \mathbb{R}^{2},

$$
[0,1] \times[0,1]=\left\{(x, y) \in \mathbb{R}^{2} \mid 0 \leqslant x \leqslant 1,0 \leqslant y \leqslant 1\right\}
$$

traversed in the counterclockwise direction.
2. Use the Fundamental Theorem of Calculus in two dimensions to evaluate the line integral $\oint_{C}\left(x^{2}+x^{3}\right) \mathrm{d} x+y^{4} \mathrm{~d} y$, where C is any simple, closed, C^{1} curve.
3. Let $P(x, y)$ and $Q(x, y)$ denote C^{1} functions defined on an open subset D of \mathbb{R}^{2}. Show that the divergence, $\operatorname{div} F$, of the vector field

$$
F(x, y)=P(x, y) \widehat{i}+Q(x, y) \widehat{j}, \quad \text { for all }(x, y) \in D
$$

is continuous on D. In particular, deduce that given $\left(x_{o}, y_{o}\right)$, for any $\varepsilon>0$, there exists $\delta>0$ such that

$$
\left|x-x_{o}\right|<\delta \text { and }\left|y-y_{o}\right|<\delta \Rightarrow\left|\operatorname{div} F(x, y)-\operatorname{div} F\left(x_{o}, y_{o}\right)\right|<\varepsilon .
$$

4. Let P, Q and F be as in Problem 3.

Fix $\left(x_{o}, y_{o}\right) \in D$. Given $\delta>0$, define the square region, R_{δ}, around $\left(x_{o}, y_{o}\right)$ to be

$$
R_{\delta}=\left\{(x, y) \in \mathbb{R}^{2} \left\lvert\, x_{o}-\frac{\delta}{2} \leqslant x \leqslant x_{o} \frac{\delta}{2}\right., y_{o}-\frac{\delta}{2} \leqslant y \leqslant y_{o} \frac{\delta}{2}\right\}
$$

Denote by ∂R_{δ} the boundary of the square R_{δ} traversed in the counterclockwise direction.
Use the Fundamental Theorem of Calculus to evaluate the flux of F across the boundary of the square R_{δ}; that is, evaluate

$$
\oint_{\partial R_{\delta}} F \cdot \widehat{n} \mathrm{~d} s
$$

where \widehat{n} is the outward unit normal to ∂R_{δ} wherever it is defined.
5. Let P, Q and F be as in Problem 3, and \mathbb{R}_{δ} be as in Problem 4.

Show that

$$
\lim _{\delta \rightarrow 0}\left(\frac{1}{\delta^{2}} \oint_{\partial R_{\delta}} F \cdot \hat{n} \mathrm{~d} s\right)=\operatorname{div} F\left(x_{o}, y_{o}\right) .
$$

Give and interpretation of this result.
Suggestion: Consider

$$
\left|\frac{1}{\delta^{2}} \int_{R_{\delta}} \operatorname{div} F(x, y) \mathrm{d} x \mathrm{~d} y-\operatorname{div} F\left(x_{o}, y_{o}\right)\right|
$$

and note that

$$
\operatorname{div} F\left(x_{o}, y_{o}\right)=\frac{1}{\delta^{2}} \int_{R_{\delta}} \operatorname{div} F\left(x_{o}, y_{o}\right) \mathrm{d} x \mathrm{~d} y
$$

Use the result of Problem 3.

