Assignment #22

Due on Monday, November 24, 2008

Read on *The Fundamental Theorem of Calculus*, pp. 279–320 in Chapter 10 of Bressoud's book.

Background and Definitions

Recall that the Fundamental Theorem of Calculus,

$$\int_M \mathrm{d}\omega = \int_{\partial M} \omega,$$

takes the following two forms in two-dimensional Euclidean space:

Let R denote a region in \mathbb{R}^2 bounded by a simple closed curve, $\partial \mathbb{R}$, made up of a finite number of C^1 paths traversed in the counterclockwise sense. Let P and Q denote two C^1 scalar fields defined on some open set containing R and its boundary, ∂R .

Theorem 0.1 (Green's Theorem). Then,

$$\int_{R} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx dy = \int_{\partial R} P dx + Q dy.$$
(1)

and, if $F = P\hat{i} + Q\hat{j}$,

Theorem 0.2 (The Divergence Theorem). Then,

$$\int_{R} \operatorname{div} F \, dx \, dy = \oint_{\partial R} F \cdot \hat{n} \, ds, \qquad (2)$$

where \hat{n} is the outward unit normal to $\partial \mathbb{R}$.

Do the following problems

1. Use the Fundamental Theorem of Calculus in two dimensions to evaluate the line integral

$$\oint_C (y^2 + x^3) \mathrm{d}x + x^4 \mathrm{d}y,$$

where C is the boundary of the unit square in \mathbb{R}^2 ,

$$[0,1] \times [0,1] = \{(x,y) \in \mathbb{R}^2 \mid 0 \le x \le 1, 0 \le y \le 1\}$$

traversed in the counterclockwise direction.

Math 107. Rumbos

- 2. Use the Fundamental Theorem of Calculus in two dimensions to evaluate the line integral $\oint_C (x^2 + x^3) dx + y^4 dy$, where C is any simple, closed, C¹ curve.
- 3. Let P(x, y) and Q(x, y) denote C^1 functions defined on an open subset D of \mathbb{R}^2 . Show that the divergence, divF, of the vector field

$$F(x,y) = P(x,y)\hat{i} + Q(x,y)\hat{j}, \text{ for all } (x,y) \in D,$$

is continuous on D. In particular, deduce that given (x_o, y_o) , for any $\varepsilon > 0$, there exists $\delta > 0$ such that

$$|x - x_o| < \delta$$
 and $|y - y_o| < \delta \Rightarrow |\operatorname{div} F(x, y) - \operatorname{div} F(x_o, y_o)| < \varepsilon$.

4. Let P, Q and F be as in Problem 3.

Fix $(x_o, y_o) \in D$. Given $\delta > 0$, define the square region, R_{δ} , around (x_o, y_o) to be

$$R_{\delta} = \left\{ (x, y) \in \mathbb{R}^2 \mid x_o - \frac{\delta}{2} \leqslant x \leqslant x_o \frac{\delta}{2}, y_o - \frac{\delta}{2} \leqslant y \leqslant y_o \frac{\delta}{2} \right\}.$$

Denote by ∂R_{δ} the boundary of the square R_{δ} traversed in the counterclockwise direction.

Use the Fundamental Theorem of Calculus to evaluate the flux of F across the boundary of the square R_{δ} ; that is, evaluate

$$\oint_{\partial R_{\delta}} F \cdot \widehat{n} \, \mathrm{d}s,$$

where \hat{n} is the outward unit normal to ∂R_{δ} wherever it is defined.

5. Let P, Q and F be as in Problem 3, and \mathbb{R}_{δ} be as in Problem 4. Show that

$$\lim_{\delta \to 0} \left(\frac{1}{\delta^2} \oint_{\partial R_{\delta}} F \cdot \hat{n} \, \mathrm{d}s \right) = \mathrm{div} F(x_o, y_o).$$

Give and interpretation of this result.

Suggestion: Consider

$$\left|\frac{1}{\delta^2}\int_{R_{\delta}} \operatorname{div} F(x,y) \, \mathrm{d}x \mathrm{d}y - \operatorname{div} F(x_o,y_o)\right|$$

and note that

$$\operatorname{div} F(x_o, y_o) = \frac{1}{\delta^2} \int_{R_{\delta}} \operatorname{div} F(x_o, y_o) \, \mathrm{d}x \mathrm{d}y.$$

Use the result of Problem 3.